Size dependence of energy transport and the effects of reduced dimensionality on transport coefficients are of key importance for understanding nonequilibrium properties of matter on the nanoscale. Here, we perform nonequilibrium and equilibrium simulations of heat conduction in a three-dimensional (3D) fluid with the multiparticle collision dynamics, interacting with two thermal walls. We find that the bulk 3D momentum-conserving fluid has a finite nondiverging thermal conductivity. However, for large aspect ratios of the simulation box, a crossover from 3D to one-dimensional (1D) abnormal behavior of the thermal conductivity occurs. In this case, we demonstrate a transition from normal to abnormal transport by a suitable decomposition of the energy current. These results not only provide a direct verification of Fourier's law, but also further confirm the validity of existing theories for 3D fluids. Moreover, they indicate that abnormal heat transport persists also for almost 1D fluids over a large range of sizes.
Heat conduction in a three-dimensional momentum-conserving fluid
Stefano Lepri
2021
Abstract
Size dependence of energy transport and the effects of reduced dimensionality on transport coefficients are of key importance for understanding nonequilibrium properties of matter on the nanoscale. Here, we perform nonequilibrium and equilibrium simulations of heat conduction in a three-dimensional (3D) fluid with the multiparticle collision dynamics, interacting with two thermal walls. We find that the bulk 3D momentum-conserving fluid has a finite nondiverging thermal conductivity. However, for large aspect ratios of the simulation box, a crossover from 3D to one-dimensional (1D) abnormal behavior of the thermal conductivity occurs. In this case, we demonstrate a transition from normal to abnormal transport by a suitable decomposition of the energy current. These results not only provide a direct verification of Fourier's law, but also further confirm the validity of existing theories for 3D fluids. Moreover, they indicate that abnormal heat transport persists also for almost 1D fluids over a large range of sizes.File | Dimensione | Formato | |
---|---|---|---|
prod_454792-doc_175449.pdf
solo utenti autorizzati
Descrizione: Heat conduction in a three-dimensional momentum-conserving fluid
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
606.48 kB
Formato
Adobe PDF
|
606.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.