We prove that on a smooth bounded set, the positive least energy solution of the Lane-Emden equation with sublinear power is isolated. As a corollary, we obtain that the first (Formula presented.) eigenvalue of the Dirichlet-Laplacian is not an accumulation point of the (Formula presented.) spectrum, on a smooth bounded set. Our results extend to a suitable class of Lipschitz domains, as well.

Positive solutions to the sublinear Lane-Emden equation are isolated

Franzina G
2021

Abstract

We prove that on a smooth bounded set, the positive least energy solution of the Lane-Emden equation with sublinear power is isolated. As a corollary, we obtain that the first (Formula presented.) eigenvalue of the Dirichlet-Laplacian is not an accumulation point of the (Formula presented.) spectrum, on a smooth bounded set. Our results extend to a suitable class of Lipschitz domains, as well.
2021
Istituto Applicazioni del Calcolo ''Mauro Picone''
Cone condition
constrained critical points
eigenvalues
Lane-Emden equation
File in questo prodotto:
File Dimensione Formato  
bradepfra.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 630.12 kB
Formato Adobe PDF
630.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399062
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact