We prove that on a smooth bounded set, the positive least energy solution of the Lane-Emden equation with sublinear power is isolated. As a corollary, we obtain that the first (Formula presented.) eigenvalue of the Dirichlet-Laplacian is not an accumulation point of the (Formula presented.) spectrum, on a smooth bounded set. Our results extend to a suitable class of Lipschitz domains, as well.
Positive solutions to the sublinear Lane-Emden equation are isolated
Franzina G
2021
Abstract
We prove that on a smooth bounded set, the positive least energy solution of the Lane-Emden equation with sublinear power is isolated. As a corollary, we obtain that the first (Formula presented.) eigenvalue of the Dirichlet-Laplacian is not an accumulation point of the (Formula presented.) spectrum, on a smooth bounded set. Our results extend to a suitable class of Lipschitz domains, as well.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
bradepfra.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
630.12 kB
Formato
Adobe PDF
|
630.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.