Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CNR Institutional Research Information System
Research on magnetic confinement of high-temperature plasmas has the ultimate
goal of harnessing nuclear fusion for the production of electricity. Although the
tokamak1 is the leading toroidal magnetic-confinement concept, it is not without
shortcomings and the fusion community has therefore also pursued alternative
concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a
three-dimensional (3D) magnetic field geometry. The availability of this additional
dimension opens up an extensive configuration space for computational
optimization of both the field geometry itself and the current-carrying coils that
produce it. Such an optimization was undertaken in designing Wendelstein 7-X
(W7-X)2, a large helical-axis advanced stellarator (HELIAS), which began operation in
2015 at Greifswald, Germany. A major drawback of 3D magnetic field geometry,
however, is that it introduces a strong temperature dependence into the stellarator's
non-turbulent 'neoclassical' energy transport. Indeed, such energy losses will become
prohibitive in high-temperature reactor plasmas unless a strong reduction of the
geometrical factor associated with this transport can be achieved; such a reduction
was therefore a principal goal of the design of W7-X. In spite of the modest heating
power currently available, W7-X has already been able to achieve high-temperature
plasma conditions during its 2017 and 2018 experimental campaigns, producing
record values of the fusion triple product for such stellarator plasmas3,4. The triple
product of plasma density, ion temperature and energy confinement time is used in
fusion research as a figure of merit, as it must attain a certain threshold value before
net-energy-producing operation of a reactor becomes possible1,5. Here we
demonstrate that such record values provide evidence for reduced neoclassical
energy transport in W7-X, as the plasma profiles that produced these results could not
have been obtained in stellarators lacking a comparably high level of neoclassical
optimization.
Demonstration of reduced neoclassical energy transport in Wendelstein 7-X
Research on magnetic confinement of high-temperature plasmas has the ultimate
goal of harnessing nuclear fusion for the production of electricity. Although the
tokamak1 is the leading toroidal magnetic-confinement concept, it is not without
shortcomings and the fusion community has therefore also pursued alternative
concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a
three-dimensional (3D) magnetic field geometry. The availability of this additional
dimension opens up an extensive configuration space for computational
optimization of both the field geometry itself and the current-carrying coils that
produce it. Such an optimization was undertaken in designing Wendelstein 7-X
(W7-X)2, a large helical-axis advanced stellarator (HELIAS), which began operation in
2015 at Greifswald, Germany. A major drawback of 3D magnetic field geometry,
however, is that it introduces a strong temperature dependence into the stellarator's
non-turbulent 'neoclassical' energy transport. Indeed, such energy losses will become
prohibitive in high-temperature reactor plasmas unless a strong reduction of the
geometrical factor associated with this transport can be achieved; such a reduction
was therefore a principal goal of the design of W7-X. In spite of the modest heating
power currently available, W7-X has already been able to achieve high-temperature
plasma conditions during its 2017 and 2018 experimental campaigns, producing
record values of the fusion triple product for such stellarator plasmas3,4. The triple
product of plasma density, ion temperature and energy confinement time is used in
fusion research as a figure of merit, as it must attain a certain threshold value before
net-energy-producing operation of a reactor becomes possible1,5. Here we
demonstrate that such record values provide evidence for reduced neoclassical
energy transport in W7-X, as the plasma profiles that produced these results could not
have been obtained in stellarators lacking a comparably high level of neoclassical
optimization.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399357
Citazioni
ND
96
89
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall'Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l'Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.