This paper deals with dilute nitride III-V (III-N-V) semiconductor nanowires and their synthesis by bottom-up (so-called self-assembly) methods for application to novel and high efficiency intermediate-band solar cells (IBSCs). Nanowire-IBSCs based on III-N-V compounds promise to overcome many of the limitations encountered so far in quantum-dots or planar-heterostructure IBSCs; indeed, thanks to the combination of IBSC functionality with the unique physical properties associated with nanowires-based devices, photovoltaic cells with unprecedentedly high power conversion efficiency, simpler junction geometry, reduced structural constraints, low materials usage and fabrication costs could be conceived. The fabrication of III-N-V nanowire-IBSCs requires however, careful engineering of the inner nanowire-device structures to comply with both IBSC stringent operational requirements and the peculiar physical properties of III-N-V semiconductor alloys. Herewith, we propose for the first time perspective III-N-V core-multishell nanowire heterostructures as potential candidates to IBSC applications, their fabrication requiring however, precisely controlled self-assembly technologies. The present status of research on the topic is reviewed, focusing in particular on the bottom-up growth of III-N-V nanowires by molecular beam and metalorganic vapor phase epitaxy methods and properties of as-grown nanostructures. Major results achieved in the current literature and open problems are presented and discussed, along with advantages and limitations of employed self-assembly methods for the fabrication of dilute nitride III-V based nanowire-IBSCs.

Dilute nitride III-V nanowires for high-efficiency intermediate-band photovoltaic cells: Materials requirements, self-assembly methods and properties

Prete P
Primo
Conceptualization
;
2020

Abstract

This paper deals with dilute nitride III-V (III-N-V) semiconductor nanowires and their synthesis by bottom-up (so-called self-assembly) methods for application to novel and high efficiency intermediate-band solar cells (IBSCs). Nanowire-IBSCs based on III-N-V compounds promise to overcome many of the limitations encountered so far in quantum-dots or planar-heterostructure IBSCs; indeed, thanks to the combination of IBSC functionality with the unique physical properties associated with nanowires-based devices, photovoltaic cells with unprecedentedly high power conversion efficiency, simpler junction geometry, reduced structural constraints, low materials usage and fabrication costs could be conceived. The fabrication of III-N-V nanowire-IBSCs requires however, careful engineering of the inner nanowire-device structures to comply with both IBSC stringent operational requirements and the peculiar physical properties of III-N-V semiconductor alloys. Herewith, we propose for the first time perspective III-N-V core-multishell nanowire heterostructures as potential candidates to IBSC applications, their fabrication requiring however, precisely controlled self-assembly technologies. The present status of research on the topic is reviewed, focusing in particular on the bottom-up growth of III-N-V nanowires by molecular beam and metalorganic vapor phase epitaxy methods and properties of as-grown nanostructures. Major results achieved in the current literature and open problems are presented and discussed, along with advantages and limitations of employed self-assembly methods for the fabrication of dilute nitride III-V based nanowire-IBSCs.
2020
Istituto per la Microelettronica e Microsistemi - IMM
Dilute nitride III-V compounds
Intermediate-band solar cells
Nanowires
Self-assembly
Nano-epitaxy
MBE
MOVPE
Growth modeling
File in questo prodotto:
File Dimensione Formato  
Prete Dilute nitride III-V nanowires for IBSCs - PCGCM2020.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 7.09 MB
Formato Adobe PDF
7.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
AAM POSTPRINT PCGCM2020 - Prete.pdf

Open Access dal 07/11/2022

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 4.43 MB
Formato Adobe PDF
4.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 29
social impact