Fishes are talented swimmers. Depending on the propulsion mechanisms many fishes can use flapping tails and/or fins to generate thrust, which seems to be connected to the formation of a reverse von Kármán wake. In the present work, the flow past a 2D flapping foil is simulated by solving the incompressible Navier-Stokes equations in the open-source OpenFOAM platform. A systematic study by varying the oscillating frequency, peak-to-peak amplitude and Reynolds number has been performed to analyze the transition of vorticity types in the wake as well as drag-thrust transition. The overset grid method is used herein to allow the pitching foil to move without restrictions. Spatial convergence tests have been carried out with respect to grid resolution and the size of overset mesh domain. Numerical results are compared with available experimental data and discussed. The results show that the adopted methodology can be well applied to simulate large amplitude motions of the flapping foil. The transitions in the types of wake are consistent with the benchmark experimental data, and the drag-thrust transition of the pitching foil does not coincide with von Kármán (vK)-reverse von Kármán (reverse-vK) wake transition and it is highly dependent on the Reynolds number.

2D numerical study on wake scenarios for a flapping foil

Greco M;Lugni C
2021

Abstract

Fishes are talented swimmers. Depending on the propulsion mechanisms many fishes can use flapping tails and/or fins to generate thrust, which seems to be connected to the formation of a reverse von Kármán wake. In the present work, the flow past a 2D flapping foil is simulated by solving the incompressible Navier-Stokes equations in the open-source OpenFOAM platform. A systematic study by varying the oscillating frequency, peak-to-peak amplitude and Reynolds number has been performed to analyze the transition of vorticity types in the wake as well as drag-thrust transition. The overset grid method is used herein to allow the pitching foil to move without restrictions. Spatial convergence tests have been carried out with respect to grid resolution and the size of overset mesh domain. Numerical results are compared with available experimental data and discussed. The results show that the adopted methodology can be well applied to simulate large amplitude motions of the flapping foil. The transitions in the types of wake are consistent with the benchmark experimental data, and the drag-thrust transition of the pitching foil does not coincide with von Kármán (vK)-reverse von Kármán (reverse-vK) wake transition and it is highly dependent on the Reynolds number.
2021
Istituto di iNgegneria del Mare - INM (ex INSEAN)
CFD
Flapping foil
Numerical features
Vortex shedding
Drag-thrust transition
File in questo prodotto:
File Dimensione Formato  
prod_454897-doc_175541.pdf

non disponibili

Descrizione: 2D numerical study on wake scenarios for a flapping foil
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 922.45 kB
Formato Adobe PDF
922.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact