Protein-based nanomaterials are gaining growing interest in biomedical field. The present paper evaluates the physico-chemical properties of electrospun nanofibers resulting from the combination of gelatin with keratin (from wool) and sericin (from silk) to validate their use for in vitro interaction studies. We demonstrated that that presence of sericin influences the fiber morphology at macroscopic level - i.e., wide diameter distributions by SEM and image analysis - with effects on chemical - i.e., a decrease of hydrogen bonds of Nsingle bondH groups verified by infrared spectroscopy - and thermal behavior of electrospun nanofibers, in comparison with gelatin-based ones. Moreover, we verified that sericin, in combination with keratin macromolecules, can amplify the biochemical signal of gelatin, improving the in-vitro stability of gelatin-based nanofibers. In vitro results confirm a synergistic effect of sericin and keratin on human Mesenchymal Stem Cells (hMSC) proliferation - increase over 50% respect to other types - associated to the enhancement of in vitro stability directly ascribable to the peculiar physical interaction among the proteins. These findings suggest the use of sericin/keratin/gelatin enriched electrospun fibers as nanostructured platforms for interface tissue engineering.

Synergistic effect of sericin and keratin in gelatin based nanofibers for in vitro applications

C Vineis;I Cruz Maya;A Varesano;C Tonetti;V Guarino;
2021

Abstract

Protein-based nanomaterials are gaining growing interest in biomedical field. The present paper evaluates the physico-chemical properties of electrospun nanofibers resulting from the combination of gelatin with keratin (from wool) and sericin (from silk) to validate their use for in vitro interaction studies. We demonstrated that that presence of sericin influences the fiber morphology at macroscopic level - i.e., wide diameter distributions by SEM and image analysis - with effects on chemical - i.e., a decrease of hydrogen bonds of Nsingle bondH groups verified by infrared spectroscopy - and thermal behavior of electrospun nanofibers, in comparison with gelatin-based ones. Moreover, we verified that sericin, in combination with keratin macromolecules, can amplify the biochemical signal of gelatin, improving the in-vitro stability of gelatin-based nanofibers. In vitro results confirm a synergistic effect of sericin and keratin on human Mesenchymal Stem Cells (hMSC) proliferation - increase over 50% respect to other types - associated to the enhancement of in vitro stability directly ascribable to the peculiar physical interaction among the proteins. These findings suggest the use of sericin/keratin/gelatin enriched electrospun fibers as nanostructured platforms for interface tissue engineering.
2021
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Gelatin
Keratin
Sericin
Electrospinning
Nanofiber
Biomedical application
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? ND
social impact