A novel method for the path combination of two lasers with very similar wavelengths has been implemented to enable the evaluation of a dual-laser calibration Thomson scattering (TS) technique. The first experimental test of this TS technique has been performed in a RFX-mod plasma device, where, due to experimental constraints, the combination of a Nd:YAG (? = 1064 nm) and a Nd:YLF (? = 1053 nm) laser system was the only viable choice available. The method requires that the beam path of both lasers be combined into a single path with the same polarization. This presents a unique challenge due to the small difference between the two laser wavelengths. In this paper, we describe two methods for beam combination: first via a prism, eventually dismissed as unpractical, and second via a polarizing beam splitter in reverse with a dual-wavelength waveplate. We detail the optical setup, waveplate design, and successful implementation of this second method.

On combining the beam path of similar wavelength lasers for dual-laser Thomson scattering

Fassina A;Pasqualotto R
2021

Abstract

A novel method for the path combination of two lasers with very similar wavelengths has been implemented to enable the evaluation of a dual-laser calibration Thomson scattering (TS) technique. The first experimental test of this TS technique has been performed in a RFX-mod plasma device, where, due to experimental constraints, the combination of a Nd:YAG (? = 1064 nm) and a Nd:YLF (? = 1053 nm) laser system was the only viable choice available. The method requires that the beam path of both lasers be combined into a single path with the same polarization. This presents a unique challenge due to the small difference between the two laser wavelengths. In this paper, we describe two methods for beam combination: first via a prism, eventually dismissed as unpractical, and second via a polarizing beam splitter in reverse with a dual-wavelength waveplate. We detail the optical setup, waveplate design, and successful implementation of this second method.
2021
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
Light scattering
Prisms
YLF lasers
Yttrium aluminum garnet
Engineering uncontrolled terms
Beam combination
Experimental test
Laser calibration
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact