Phonons in a Bose-Einstein condensate can be made to behave as if they propagate in curved spacetime by controlling the condensate flow speed. Seemingly disconnected to this, artificial gauge potentials can be induced in charge neutral atomic condensates by for instance coupling two atomic levels to a laser field. In this work, we connect these two worlds and show that synthetic interacting gauge fields, i.e. density-dependent gauge potentials, induce a non-trivial spacetime structure for the phonons. Whilst the creation of effective horizons for phonons solely depends on the flow speed of the condensate, this allows for the creation of new spacetime geometries which can be easily designed by tuning the transverse laser phase. By exploiting this new degree of freedom we show that effectively charged phonons in 2+1 dimensions can be simulated, which behave as if they move under the influence of both a gravitational and an electromagnetic field.

Curved spacetime from interacting gauge theories

2019

Abstract

Phonons in a Bose-Einstein condensate can be made to behave as if they propagate in curved spacetime by controlling the condensate flow speed. Seemingly disconnected to this, artificial gauge potentials can be induced in charge neutral atomic condensates by for instance coupling two atomic levels to a laser field. In this work, we connect these two worlds and show that synthetic interacting gauge fields, i.e. density-dependent gauge potentials, induce a non-trivial spacetime structure for the phonons. Whilst the creation of effective horizons for phonons solely depends on the flow speed of the condensate, this allows for the creation of new spacetime geometries which can be easily designed by tuning the transverse laser phase. By exploiting this new degree of freedom we show that effectively charged phonons in 2+1 dimensions can be simulated, which behave as if they move under the influence of both a gravitational and an electromagnetic field.
2019
Istituto Nazionale di Ottica - INO
analogue gravityartificial gauge fieldseffective spacetimeeffective charged phononsBose-Einstein condensate
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399638
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact