This paper investigates the performances of a greedy randomized algorithm to optimize the realization of nearest-neighbor compliant quantum circuits. Current technological limitations (decoherence effect) impose that the overall duration (makespan) of the quantum circuit realization be minimized. One core contribution of this paper is a lexicographic two-key ranking function for quantum gate selection: the first key acts as a global closure metric to minimize the solution makespan; the second one is a local metric acting as "tie-breaker" for avoiding cycling. Our algorithm has been tested on a set of quantum circuit benchmark instances of increasing sizes available from the recent literature. We demonstrate that our heuristic approach outperforms the solutions obtained in previous research against the same benchmark, both from the CPU efficiency and from the solution quality standpoint.

Greedy Randomized Search for Scalable Compilation of Quantum Circuits

Angelo Oddi;Riccardo Rasconi
2018

Abstract

This paper investigates the performances of a greedy randomized algorithm to optimize the realization of nearest-neighbor compliant quantum circuits. Current technological limitations (decoherence effect) impose that the overall duration (makespan) of the quantum circuit realization be minimized. One core contribution of this paper is a lexicographic two-key ranking function for quantum gate selection: the first key acts as a global closure metric to minimize the solution makespan; the second one is a local metric acting as "tie-breaker" for avoiding cycling. Our algorithm has been tested on a set of quantum circuit benchmark instances of increasing sizes available from the recent literature. We demonstrate that our heuristic approach outperforms the solutions obtained in previous research against the same benchmark, both from the CPU efficiency and from the solution quality standpoint.
2018
978-3-319-93030-5
Quantum Computing
Optimization
Scheduling
Planning
Greedy heuristics
Random algorithms
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact