In this work we investigate the performance of greedy randomised search (GRS) techniques to the problem of compiling quantum circuits to emerging quantum hardware. Quantum computing (QC) represents the next big step towards power consumption minimisation and CPU speed boost in the future of computing machines. Quantum computing uses quantum gates that manipulate multi-valued bits (qubits). A quantum circuit is composed of a number of qubits and a series of quantum gates that operate on those qubits, and whose execution realises a specific quantum algorithm. Current quantum computing technologies limit the qubit interaction distance allowing the execution of gates between adjacent qubits only. This has opened the way to the exploration of possible techniques aimed at guaranteeing nearest-neighbor (NN) compliance in any quantum circuit through the addition of a number of so-called swap gates between adjacent qubits. In addition, technological limitations (decoherence effect) impose that the overall duration (makespan) of the quantum circuit realization be minimized. One core contribution of the paper is the definition of two lexicographic ranking functions for quantum gate selection, using two keys: one key acts as a global closure metric to minimise the solution makespan; the second one is a local metric, which favours the mutual approach of the closest qstates pairs. We present a GRS procedure that synthesises NN-compliant quantum circuits realizations, starting from a set of benchmark instances of different size belonging to the Quantum Approximate Optimization Algorithm (QAOA) class tailored for the MaxCut problem. We propose a comparison between the presented meta-heuristics and the approaches used in the recent literature against the same benchmarks, both from the CPU efficiency and from the solution quality standpoint. In particular, we compare our approach against a reference benchmark initially proposed and subsequently expanded in [1] by considering: (i) variable qubit state initialisation and (ii) crosstalk constraints that further restrict parallel gate execution.

Analyzing Heuristic-based Randomized Search Strategies for the Quantum Circuit Compilation Problem

Oddi Angelo
;
Rasconi Riccardo
2020

Abstract

In this work we investigate the performance of greedy randomised search (GRS) techniques to the problem of compiling quantum circuits to emerging quantum hardware. Quantum computing (QC) represents the next big step towards power consumption minimisation and CPU speed boost in the future of computing machines. Quantum computing uses quantum gates that manipulate multi-valued bits (qubits). A quantum circuit is composed of a number of qubits and a series of quantum gates that operate on those qubits, and whose execution realises a specific quantum algorithm. Current quantum computing technologies limit the qubit interaction distance allowing the execution of gates between adjacent qubits only. This has opened the way to the exploration of possible techniques aimed at guaranteeing nearest-neighbor (NN) compliance in any quantum circuit through the addition of a number of so-called swap gates between adjacent qubits. In addition, technological limitations (decoherence effect) impose that the overall duration (makespan) of the quantum circuit realization be minimized. One core contribution of the paper is the definition of two lexicographic ranking functions for quantum gate selection, using two keys: one key acts as a global closure metric to minimise the solution makespan; the second one is a local metric, which favours the mutual approach of the closest qstates pairs. We present a GRS procedure that synthesises NN-compliant quantum circuits realizations, starting from a set of benchmark instances of different size belonging to the Quantum Approximate Optimization Algorithm (QAOA) class tailored for the MaxCut problem. We propose a comparison between the presented meta-heuristics and the approaches used in the recent literature against the same benchmarks, both from the CPU efficiency and from the solution quality standpoint. In particular, we compare our approach against a reference benchmark initially proposed and subsequently expanded in [1] by considering: (i) variable qubit state initialisation and (ii) crosstalk constraints that further restrict parallel gate execution.
2020
Istituto di Scienze e Tecnologie della Cognizione - ISTC
Quantum Computing
Optimization
Scheduling
Planning
Greedy Heuristics
Random Algorithms
File in questo prodotto:
File Dimensione Formato  
prod_449559-doc_162343.pdf

solo utenti autorizzati

Descrizione: Oddi A, Rasconi R, Eiter T, Maratea M, Vallati M. Analyzing Heuristic-based Randomized Search Strategies for the Quantum Circuit Compilation Problem. Fundamenta Informaticae. 2020;174(3-4):259-281. doi:10.3233/FI-2020-1942
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 440.12 kB
Formato Adobe PDF
440.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399797
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact