In cavity quantum electrodynamics, strong light-matter coupling is normally observed between a photon mode and a discrete optically active transition. In the present work we demonstrate that strong coupling can also be achieved using ionizing, intrinsically continuum, transitions. This leads to the appearance of novel discrete polaritonic resonances, corresponding to dressed bound exciton states, kept together by the exchange of virtual cavity photons. We apply our theory to the case of intersubband transitions in doped quantum wells, where Coulomb-bound excitons are absent. In considering quantum wells with a single bound electronic subband, in which all transitions involve states in the continuum, we find that the novel bound excitons predicted by our theory are observable within present-day, realistic parameters. Our work shows how strong light-matter coupling can be used as a novel gauge to tune both optical and electronic properties of semiconductor heterostructures beyond those permitted by mere crystal properties. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.

Strong coupling of ionizing transitions

Carusotto Iacopo;De Liberato Simone
2019

Abstract

In cavity quantum electrodynamics, strong light-matter coupling is normally observed between a photon mode and a discrete optically active transition. In the present work we demonstrate that strong coupling can also be achieved using ionizing, intrinsically continuum, transitions. This leads to the appearance of novel discrete polaritonic resonances, corresponding to dressed bound exciton states, kept together by the exchange of virtual cavity photons. We apply our theory to the case of intersubband transitions in doped quantum wells, where Coulomb-bound excitons are absent. In considering quantum wells with a single bound electronic subband, in which all transitions involve states in the continuum, we find that the novel bound excitons predicted by our theory are observable within present-day, realistic parameters. Our work shows how strong light-matter coupling can be used as a novel gauge to tune both optical and electronic properties of semiconductor heterostructures beyond those permitted by mere crystal properties. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
2019
Intersubband transition
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399815
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact