We study theoretically the black-hole lasing phenomenon in a flowing one-dimensional, coherently coupled two-component atomic Bose-Einstein condensate whose constituent atoms interact via a spin-dependent s-wave contact interaction. We show by a numerical analysis the onset of the dynamical instability in the spin branch of the excitations, once a finite supersonic region is created in this branch. We study both a spatially homogeneous geometry and a harmonically trapped condensate. Experimental advantages of the two-component configuration are pointed out, with an eye towards studies of backreaction phenomena.

Black-hole lasing in coherently coupled two-component atomic condensates

Carusotto Iacopo
2017

Abstract

We study theoretically the black-hole lasing phenomenon in a flowing one-dimensional, coherently coupled two-component atomic Bose-Einstein condensate whose constituent atoms interact via a spin-dependent s-wave contact interaction. We show by a numerical analysis the onset of the dynamical instability in the spin branch of the excitations, once a finite supersonic region is created in this branch. We study both a spatially homogeneous geometry and a harmonically trapped condensate. Experimental advantages of the two-component configuration are pointed out, with an eye towards studies of backreaction phenomena.
2017
Black hole laser
cold atoms
analog model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact