We theoretically investigate the dispersion relation of small-amplitude optical waves superimposing upon a beam of polarized monochromatic light propagating along a single-mode channel waveguide characterized by an instantaneous and spatially local Kerr nonlinearity. These small luminous fluctuations propagate along the waveguide as Bogoliubov elementary excitations on top of a one-dimensional dilute Bose quantum fluid evolve in time. They consequently display a strongly renormalized dispersion law, of Bogoliubov type. Analytical and numerical results are found in both the absence and the presence of one- and two-photon losses. Silicon and silicon-nitride waveguides are used as examples. We finally propose an experiment to measure this Bogoliubov dispersion relation, based on a stimulated four-wave mixing and interference spectroscopy techniques.
Pump-and-probe optical transmission phase shift as a quantitative probe of the Bogoliubov dispersion relation in a nonlinear channel waveguide
Carusotto Iacopo
2017
Abstract
We theoretically investigate the dispersion relation of small-amplitude optical waves superimposing upon a beam of polarized monochromatic light propagating along a single-mode channel waveguide characterized by an instantaneous and spatially local Kerr nonlinearity. These small luminous fluctuations propagate along the waveguide as Bogoliubov elementary excitations on top of a one-dimensional dilute Bose quantum fluid evolve in time. They consequently display a strongly renormalized dispersion law, of Bogoliubov type. Analytical and numerical results are found in both the absence and the presence of one- and two-photon losses. Silicon and silicon-nitride waveguides are used as examples. We finally propose an experiment to measure this Bogoliubov dispersion relation, based on a stimulated four-wave mixing and interference spectroscopy techniques.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.