In November 2016, an extreme rainfall event affected the Ligurian Alps (NW Italy). Consequently, several landslides and debris flows occurred in the upper Tanarello stream basin. In particular, the village of Monesi di Mendatica was severely damaged by two landslide phenomena: the activation of a rotational landslide, which caused the total collapse of two buildings and part of the main road, and the reactivation of a deep-seated planar massive and a complex landslide, which widely fractured most of the buildings in the village. The latter phenomenon was mostly unknown and had never been monitored prior to the 2016 event. Due to the extensive damage, the village of Monesi was completely evacuated, and the road connecting a ski resort area in the upper part of the valley was closed. Furthermore, a potentially dangerous situation related to the eventual progressive evolution of this landslide that could cause a temporary occlusion of the Tanarello stream still remains. For this reason, we defined the landslide behaviour, triggering conditions and chronological evolution leading to the 2016 event using a multidisciplinary approach. This approach consisted of field surveys, satellite DInSAR time series analyses, digital image correlation techniques, rainfall records analyses, postevent monitoring campaigns and subsurface investigation data analyses, and numerical modelling. This multidisciplinary approach enhanced our understanding of this landslide, which is fundamental to better comprehend its behaviour and possible evolution.

A multidisciplinary investigation of deep-seated landslide reactivation triggered by an extreme rainfall event: a case study of the Monesi di Mendatica landslide, Ligurian Alps

Davide Notti
Primo
;
Aleksandra Wrzesniak
;
Niccolò Dematteis;Piernicola Lollino;Nunzio Luciano Fazio;Daniele Giordan
Ultimo
2021

Abstract

In November 2016, an extreme rainfall event affected the Ligurian Alps (NW Italy). Consequently, several landslides and debris flows occurred in the upper Tanarello stream basin. In particular, the village of Monesi di Mendatica was severely damaged by two landslide phenomena: the activation of a rotational landslide, which caused the total collapse of two buildings and part of the main road, and the reactivation of a deep-seated planar massive and a complex landslide, which widely fractured most of the buildings in the village. The latter phenomenon was mostly unknown and had never been monitored prior to the 2016 event. Due to the extensive damage, the village of Monesi was completely evacuated, and the road connecting a ski resort area in the upper part of the valley was closed. Furthermore, a potentially dangerous situation related to the eventual progressive evolution of this landslide that could cause a temporary occlusion of the Tanarello stream still remains. For this reason, we defined the landslide behaviour, triggering conditions and chronological evolution leading to the 2016 event using a multidisciplinary approach. This approach consisted of field surveys, satellite DInSAR time series analyses, digital image correlation techniques, rainfall records analyses, postevent monitoring campaigns and subsurface investigation data analyses, and numerical modelling. This multidisciplinary approach enhanced our understanding of this landslide, which is fundamental to better comprehend its behaviour and possible evolution.
2021
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
Extreme rainfall
Digital image correlation
DInSAR
Numerical modelling
Landslide reactivation
Multidisciplinary approach
File in questo prodotto:
File Dimensione Formato  
prod_449643-doc_162418.pdf

accesso aperto

Descrizione: Notti_et_2021_Landslides
Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 10.01 MB
Formato Adobe PDF
10.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 20
social impact