A tungsten carbide ceramic containing 5 vol% silicon carbide was hot pressed to full density at 1820 °C. A small amount of transient liquid phase based on W-C-Si-O facilitated oxide removal in the reducing environment and favoured the development of a bimodal microstructure containing sub-micrometric grains with square or rod-like morphologies. These microstructural features led to outstanding mechanical properties from room to elevated temperatures. For the first time, WC-materials were characterized up to 1500 °C exhibiting flexural strength over 1 GPa in the whole temperature range and fracture toughness from 7 to 15 MPa??m.
Binderless WC with high strength and toughness up to 1500 °C
Silvestroni L
Writing – Original Draft Preparation
;Gilli NSecondo
Formal Analysis
;Migliori AFormal Analysis
;Sciti DFunding Acquisition
;
2020
Abstract
A tungsten carbide ceramic containing 5 vol% silicon carbide was hot pressed to full density at 1820 °C. A small amount of transient liquid phase based on W-C-Si-O facilitated oxide removal in the reducing environment and favoured the development of a bimodal microstructure containing sub-micrometric grains with square or rod-like morphologies. These microstructural features led to outstanding mechanical properties from room to elevated temperatures. For the first time, WC-materials were characterized up to 1500 °C exhibiting flexural strength over 1 GPa in the whole temperature range and fracture toughness from 7 to 15 MPa??m.| File | Dimensione | Formato | |
|---|---|---|---|
|
Uscito su JECS.pdf
solo utenti autorizzati
Descrizione: Full length article
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.88 MB
Formato
Adobe PDF
|
3.88 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


