In this article, we address the problem of inferring direct influences in social networks from partial samples of a class of opinion dynamics. The interest is motivated by the study of several complex systems arising in social sciences, where a population of agents interacts according to a communication graph. These dynamics over networks often exhibit an oscillatory behavior, given the stochastic effects or the random nature of the local interactions process. Inspired by recent results on estimation of vector autoregressive processes, we propose a method to estimate the social network topology and the strength of the interconnections starting from partial observations of the interactions, when the whole sample path cannot be observed due to limitations of the observation process. Besides the design of the method, our main contributions include a rigorous proof of the convergence of the proposed estimators and the evaluation of the performance in terms of complexity and number of sample. Extensive simulations on randomly generated networks show the effectiveness of the proposed technique.

Ergodic Opinion Dynamics over Networks: Learning Influences from Partial Observations

Ravazzi C;Dabbene F
2021

Abstract

In this article, we address the problem of inferring direct influences in social networks from partial samples of a class of opinion dynamics. The interest is motivated by the study of several complex systems arising in social sciences, where a population of agents interacts according to a communication graph. These dynamics over networks often exhibit an oscillatory behavior, given the stochastic effects or the random nature of the local interactions process. Inspired by recent results on estimation of vector autoregressive processes, we propose a method to estimate the social network topology and the strength of the interconnections starting from partial observations of the interactions, when the whole sample path cannot be observed due to limitations of the observation process. Besides the design of the method, our main contributions include a rigorous proof of the convergence of the proposed estimators and the evaluation of the performance in terms of complexity and number of sample. Extensive simulations on randomly generated networks show the effectiveness of the proposed technique.
2021
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Analytical models
control systems
social network services
systemidentification
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/400094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact