The good chelating properties of hydroxypyrone (HPO) derivatives towards oxidovanadium(IV) cation, VO, constitute the precondition for the development of new insulinmimetic and anticancer compounds. In the present work, we examined the VO complex formation equilibria of two kojic acid (KA) derivatives, L4 and L9, structurally constituted by two kojic acid units linked in position 6 through methylene diamine and diethyl-ethylenediamine, respectively. These chemical systems have been characterized in solution by the combined use of various complementary techniques, as UV-vis spectrophotometry, potentiometry, NMR and EPR spectroscopy, ESI-MS spectrometry, and DFT calculations. The thermodynamic approach allowed proposing a chemical coordination model and the calculation of the complex formation constants. Both ligands L4 and L9 form 1:1 binuclear complexes at acidic and physiological pHs, with various protonation degrees in which two KA units coordinate each VO ion. The joined use of different techniques allowed reaching a coherent vision of the complexation models of the two ligands toward oxidovanadium(IV) ion in aqueous solution. The high stability of the formed species and the binuclear structure may favor their biological action, and represent a good starting point toward the design of new pharmacologically active vanadium species.

Thermodynamic study of oxidovanadium(Iv) with kojic acid derivatives: A multi-technique approach

Sanna Daniele;Ugone Valeria;
2021

Abstract

The good chelating properties of hydroxypyrone (HPO) derivatives towards oxidovanadium(IV) cation, VO, constitute the precondition for the development of new insulinmimetic and anticancer compounds. In the present work, we examined the VO complex formation equilibria of two kojic acid (KA) derivatives, L4 and L9, structurally constituted by two kojic acid units linked in position 6 through methylene diamine and diethyl-ethylenediamine, respectively. These chemical systems have been characterized in solution by the combined use of various complementary techniques, as UV-vis spectrophotometry, potentiometry, NMR and EPR spectroscopy, ESI-MS spectrometry, and DFT calculations. The thermodynamic approach allowed proposing a chemical coordination model and the calculation of the complex formation constants. Both ligands L4 and L9 form 1:1 binuclear complexes at acidic and physiological pHs, with various protonation degrees in which two KA units coordinate each VO ion. The joined use of different techniques allowed reaching a coherent vision of the complexation models of the two ligands toward oxidovanadium(IV) ion in aqueous solution. The high stability of the formed species and the binuclear structure may favor their biological action, and represent a good starting point toward the design of new pharmacologically active vanadium species.
2021
Istituto di Chimica Biomolecolare - ICB - Sede Secondaria Sassari
DFT calculations
EPR spectroscopy
ESI-MS spectrometry
Kojic acid
Oxidovanadium(IV)
Potentiometry
UV-visible spectrophotometry
File in questo prodotto:
File Dimensione Formato  
prod_458486-doc_179609.pdf

accesso aperto

Descrizione: Thermodynamic study of oxidovanadium(Iv) with kojic acid derivatives: A multi-technique approach
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/400122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact