The result of this paper is the determination of the cohomology of Artin groups of type A_n, B_n and A. _n with non-trivial local coefficients. The main result is an explicit computation of the cohomology of the Artin group of type B_n with coefficients over the module Q[q±1, t±1]. Here the first n - 1 standard generators of the group act by (-q)-multiplication, while the last one acts by (-t)-multiplication. The proof uses some technical results from previous papers plus computations over a suitable spectral sequence. The remaining cases follow from an application of Shapiro's lemma, by considering some well-known inclusions: we obtain the rational cohomology of the Artin group of affine type A. _n as well as the cohomology of the classical braid group Br_n with coefficients in the n-dimensional representation presented in Tong, Yang, and Ma (1996). The topological counterpart is the explicit construction of finite CW-complexes endowed with a free action of the Artin groups, which are known to be K(p, 1) spaces in some cases (including finite type groups). Particularly simple formulas for the Euler-characteristic of these orbit spaces are derived.

Cohomology of affine artin groups and applications

Moroni D;Salvetti M
2008

Abstract

The result of this paper is the determination of the cohomology of Artin groups of type A_n, B_n and A. _n with non-trivial local coefficients. The main result is an explicit computation of the cohomology of the Artin group of type B_n with coefficients over the module Q[q±1, t±1]. Here the first n - 1 standard generators of the group act by (-q)-multiplication, while the last one acts by (-t)-multiplication. The proof uses some technical results from previous papers plus computations over a suitable spectral sequence. The remaining cases follow from an application of Shapiro's lemma, by considering some well-known inclusions: we obtain the rational cohomology of the Artin group of affine type A. _n as well as the cohomology of the classical braid group Br_n with coefficients in the n-dimensional representation presented in Tong, Yang, and Ma (1996). The topological counterpart is the explicit construction of finite CW-complexes endowed with a free action of the Artin groups, which are known to be K(p, 1) spaces in some cases (including finite type groups). Particularly simple formulas for the Euler-characteristic of these orbit spaces are derived.
2008
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Affine Artin groups
Twisted cohomology
Group representations
File in questo prodotto:
File Dimensione Formato  
prod_44156-doc_16489.pdf

solo utenti autorizzati

Descrizione: Cohomology of affine artin groups and applications
Tipologia: Versione Editoriale (PDF)
Dimensione 305.43 kB
Formato Adobe PDF
305.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/40015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 20
social impact