Organic neuromorphic devices mimic signal processing features of biological synapses, with short-term plasticity, STP, modulated by the frequency of the input voltage pulses. Here, an artificial synapse, made of intracortical microelectrodes, is demonstrated that exhibits either depressive or facilitative STP. The crossover between the two STP regimes is controlled by the frequency of the input voltage. STP features are described with an equivalent circuit where an inductance component is introduced in parallel with the RC circuit associated with poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT/PSS)||electrolyte interface. The proposed RLC circuit explains the physical origin of the observed STP and its two timescales in terms of charge build up in PEDOT/PSS.

Implantable Organic Artificial Synapses Exhibiting Crossover between Depressive and Facilitative Plasticity Response

Murgia M.;
2021

Abstract

Organic neuromorphic devices mimic signal processing features of biological synapses, with short-term plasticity, STP, modulated by the frequency of the input voltage pulses. Here, an artificial synapse, made of intracortical microelectrodes, is demonstrated that exhibits either depressive or facilitative STP. The crossover between the two STP regimes is controlled by the frequency of the input voltage. STP features are described with an equivalent circuit where an inductance component is introduced in parallel with the RC circuit associated with poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT/PSS)||electrolyte interface. The proposed RLC circuit explains the physical origin of the observed STP and its two timescales in terms of charge build up in PEDOT/PSS.
2021
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
artificial synapses
implantable electronics
neuromorphic device modeling
organic neuromorphic devices
short-term plasticity
File in questo prodotto:
File Dimensione Formato  
Adv Elect Materials - 2021 - Calandra Sebastianella - Implantable Organic Artificial Synapses Exhibiting Crossover between.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 863.87 kB
Formato Adobe PDF
863.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/400153
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 8
social impact