The present work focuses on research into alternative and more scalable processes for organometal halide perovskite layer deposition. We compare solar cells fabricated by sequential step deposition of the perovskite layer, where the PbI2 film is deposited using either blade or spin coating. By controlling the crystallization of the PbI2 with air flow, a highly compact layer was obtained with both techniques. The final perovskite structure was then obtained by dipping the substrates in a methylammonium iodide solution. The study and the consequent optimization of the blade coating process and the dipping time, led us to achieve 10 mm(2) solar cells with a maximum efficiency of 13.3% and an average efficiency of 12.1%. To prove the scalability of the process, series connected modules were fabricated containing blade coated PbI2 films. The films were laser patterned with a CO2 laser before being dipped in the methylamine iodide solution. A module efficiency of 10.4% was obtained for a 10.1 cm(2) active area. An efficiency of 43% was measured for a module area of 100 cm(2). (C) 2014 Elsevier B.V. All rights reserved.

Perovskite solar cells and large area modules (100 cm(2)) based on an air flow-assisted PbI2 blade coating deposition process

Di Carlo Aldo
2015

Abstract

The present work focuses on research into alternative and more scalable processes for organometal halide perovskite layer deposition. We compare solar cells fabricated by sequential step deposition of the perovskite layer, where the PbI2 film is deposited using either blade or spin coating. By controlling the crystallization of the PbI2 with air flow, a highly compact layer was obtained with both techniques. The final perovskite structure was then obtained by dipping the substrates in a methylammonium iodide solution. The study and the consequent optimization of the blade coating process and the dipping time, led us to achieve 10 mm(2) solar cells with a maximum efficiency of 13.3% and an average efficiency of 12.1%. To prove the scalability of the process, series connected modules were fabricated containing blade coated PbI2 films. The films were laser patterned with a CO2 laser before being dipped in the methylamine iodide solution. A module efficiency of 10.4% was obtained for a 10.1 cm(2) active area. An efficiency of 43% was measured for a module area of 100 cm(2). (C) 2014 Elsevier B.V. All rights reserved.
2015
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Perovskite solar cells
Perovskite solar modules
Blade coating
Thin film photovoltaics
Crystallization control
Laser patterning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/400327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact