In spite of tremendous progress in deciphering the molecular mechanisms involved in intracellular transport in cell culture and in the test tube, many aspects of this process in situ remain unclear. Here, we examined lipid transcytosis in enterocytes in adult rats. Apical clathrin-coated buds and the ER exit sites were not found. After starvation, the Golgi complex was in a non-transporting state and contained many vesicles, but no intercisternal connections and typical thecis-most and thetrans-most cisternae. Following the addition of the lipids in the form of chyme, pre-chylomicrons (pre-ChMs) were initially found in the tubules of the smooth SER attached to the basolateral plasmalemma below the belt composed of adhesive junctions (AJ) and always connected with other cisternae. However, the ER exit sites were still absent. Pre-ChMs moved into thecis-most cisterna and were concentrated in cisternal distensions at thetrans-side of the Golgi complex. This induced attachment of thecis-most and thetrans-most cisternae to the Golgi complex. Post-Golgi carriers fused with the basolateral plasmalemma and delivered ChMs outside. Overloading of enterocytes with lipids resulted in an accumulation of lipid droplets, an increase of the diameter of ChMs, and shift of the Golgi complex to the transporting state with the formation of intercisternal connections, attachment of thecis-most and thetrans-most cisternae and disappearance of vesicles. These data are discussed from the functional point of view. In spite of tremendous progress in deciphering the molecular mechanisms involved in intracellular transport in cell culture and in the test tube, many aspects of this process in situ remain unclear. Here, we examined lipid transcytosis in enterocytes in adult rats. Apical clathrin-coated buds and the ER exit sites were not found. After starvation, the Golgi complex was in a non-transporting state and contained many vesicles, but no intercisternal connections and typical thecis-most and thetrans-most cisternae. Following the addition of the lipids in the form of chyme, pre-chylomicrons (pre-ChMs) were initially found in the tubules of the smooth SER attached to the basolateral plasmalemma below the belt composed of adhesive junctions (AJ) and always connected with other cisternae. However, the ER exit sites were still absent. Pre-ChMs moved into thecis-most cisterna and were concentrated in cisternal distensions at thetrans-side of the Golgi complex. This induced attachment of thecis-most and thetrans-most cisternae to the Golgi complex. Post-Golgi carriers fused with the basolateral plasmalemma and delivered ChMs outside. Overloading of enterocytes with lipids resulted in an accumulation of lipid droplets, an increase of the diameter of ChMs, and shift of the Golgi complex to the transporting state with the formation of intercisternal connections, attachment of thecis-most and thetrans-most cisternae and disappearance of vesicles. These data are discussed from the functional point of view.

Structure of the enterocyte transcytosis compartments during lipid absorption

Parashuraman Seetharaman;
2020

Abstract

In spite of tremendous progress in deciphering the molecular mechanisms involved in intracellular transport in cell culture and in the test tube, many aspects of this process in situ remain unclear. Here, we examined lipid transcytosis in enterocytes in adult rats. Apical clathrin-coated buds and the ER exit sites were not found. After starvation, the Golgi complex was in a non-transporting state and contained many vesicles, but no intercisternal connections and typical thecis-most and thetrans-most cisternae. Following the addition of the lipids in the form of chyme, pre-chylomicrons (pre-ChMs) were initially found in the tubules of the smooth SER attached to the basolateral plasmalemma below the belt composed of adhesive junctions (AJ) and always connected with other cisternae. However, the ER exit sites were still absent. Pre-ChMs moved into thecis-most cisterna and were concentrated in cisternal distensions at thetrans-side of the Golgi complex. This induced attachment of thecis-most and thetrans-most cisternae to the Golgi complex. Post-Golgi carriers fused with the basolateral plasmalemma and delivered ChMs outside. Overloading of enterocytes with lipids resulted in an accumulation of lipid droplets, an increase of the diameter of ChMs, and shift of the Golgi complex to the transporting state with the formation of intercisternal connections, attachment of thecis-most and thetrans-most cisternae and disappearance of vesicles. These data are discussed from the functional point of view. In spite of tremendous progress in deciphering the molecular mechanisms involved in intracellular transport in cell culture and in the test tube, many aspects of this process in situ remain unclear. Here, we examined lipid transcytosis in enterocytes in adult rats. Apical clathrin-coated buds and the ER exit sites were not found. After starvation, the Golgi complex was in a non-transporting state and contained many vesicles, but no intercisternal connections and typical thecis-most and thetrans-most cisternae. Following the addition of the lipids in the form of chyme, pre-chylomicrons (pre-ChMs) were initially found in the tubules of the smooth SER attached to the basolateral plasmalemma below the belt composed of adhesive junctions (AJ) and always connected with other cisternae. However, the ER exit sites were still absent. Pre-ChMs moved into thecis-most cisterna and were concentrated in cisternal distensions at thetrans-side of the Golgi complex. This induced attachment of thecis-most and thetrans-most cisternae to the Golgi complex. Post-Golgi carriers fused with the basolateral plasmalemma and delivered ChMs outside. Overloading of enterocytes with lipids resulted in an accumulation of lipid droplets, an increase of the diameter of ChMs, and shift of the Golgi complex to the transporting state with the formation of intercisternal connections, attachment of thecis-most and thetrans-most cisternae and disappearance of vesicles. These data are discussed from the functional point of view.
2020
Istituto di Endocrinologia e Oncologia Sperimentale ''G. Salvatore'' - IEOS - Sede Secondaria c/o AdR Napoli 1
Enterocyte
ER exit site
Golgi complex
Endocytosis
Transcytosis
Chylomicrons
Interdigitating contact
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/400405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 16
social impact