Several studies investigated the linguistic information implicitly encoded in Neural Language Models. Most of these works focused on quantifying the amount and type of information available within their internal representations and across their layers. In line with this scenario, we proposed a different study, based on Lasso regression, aimed at understanding how the information encoded by BERT sentence-level representations is arrange within its hidden units. Using a suite of several probing tasks, we showed the existence of a relationship between the implicit knowledge learned by the model and the number of individual units involved in the encodings of this competence. Moreover, we found that it is possible to identify groups of hidden units more relevant for specific linguistic properties.

How do BERT embeddings organize linguistic knowledge?

Puccetti G.;Miaschi A.;Dell'Orletta F.
2021

Abstract

Several studies investigated the linguistic information implicitly encoded in Neural Language Models. Most of these works focused on quantifying the amount and type of information available within their internal representations and across their layers. In line with this scenario, we proposed a different study, based on Lasso regression, aimed at understanding how the information encoded by BERT sentence-level representations is arrange within its hidden units. Using a suite of several probing tasks, we showed the existence of a relationship between the implicit knowledge learned by the model and the number of individual units involved in the encodings of this competence. Moreover, we found that it is possible to identify groups of hidden units more relevant for specific linguistic properties.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC en
dc.authority.orgunit Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI en
dc.authority.people Puccetti G. en
dc.authority.people Miaschi A. en
dc.authority.people Dell'Orletta F. en
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.contributor.appartenenza.mi 973 *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.date.accessioned 2024/02/20 15:08:05 -
dc.date.available 2024/02/20 15:08:05 -
dc.date.firstsubmission 2024/12/18 17:17:45 *
dc.date.issued 2021 -
dc.date.submission 2024/12/18 17:17:45 *
dc.description.abstracteng Several studies investigated the linguistic information implicitly encoded in Neural Language Models. Most of these works focused on quantifying the amount and type of information available within their internal representations and across their layers. In line with this scenario, we proposed a different study, based on Lasso regression, aimed at understanding how the information encoded by BERT sentence-level representations is arrange within its hidden units. Using a suite of several probing tasks, we showed the existence of a relationship between the implicit knowledge learned by the model and the number of individual units involved in the encodings of this competence. Moreover, we found that it is possible to identify groups of hidden units more relevant for specific linguistic properties. -
dc.description.affiliations Scuola Normale Superiore; Università di Pisa; Istituto di Linguistica Computazionale (ILC-CNR) -
dc.description.allpeople Puccetti, G.; Miaschi, A.; Dell'Orletta, F. -
dc.description.allpeopleoriginal Puccetti G.; Miaschi A.; Dell'Orletta F. en
dc.description.fulltext open en
dc.description.international no en
dc.description.numberofauthors 3 -
dc.identifier.doi 10.18653/v1/2021.deelio-1.6 en
dc.identifier.isbn 978-1-954085-30-5 en
dc.identifier.scopus 2-s2.0-85121843644 en
dc.identifier.uri https://hdl.handle.net/20.500.14243/400473 -
dc.identifier.url https://www.aclweb.org/anthology/2021.deelio-1.6 en
dc.language.iso eng en
dc.miur.last.status.update 2024-12-18T16:18:01Z *
dc.relation.conferencedate 10/06/2021 en
dc.relation.conferencename 2nd Workshop on Knowledge Extraction and Integrationfor Deep Learning Architectures en
dc.relation.firstpage 48 en
dc.relation.ispartofbook Proceedings of the 2nd Workshop on Knowledge Extraction and Integrationfor Deep Learning Architectures en
dc.relation.lastpage 57 en
dc.relation.medium ELETTRONICO en
dc.relation.numberofpages 10 en
dc.subject.keywordseng NLP -
dc.subject.keywordseng Interpretability -
dc.subject.keywordseng Deep Learning -
dc.subject.singlekeyword NLP *
dc.subject.singlekeyword Interpretability *
dc.subject.singlekeyword Deep Learning *
dc.title How do BERT embeddings organize linguistic knowledge? en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.miur 273 -
dc.ugov.descaux1 454440 -
iris.mediafilter.data 2025/04/11 03:49:15 *
iris.orcid.lastModifiedDate 2025/02/05 11:07:11 *
iris.orcid.lastModifiedMillisecond 1738750031210 *
iris.scopus.extIssued 2021 -
iris.scopus.extTitle How Do BERT Embeddings Organize Linguistic Knowledge? -
iris.scopus.ideLinkStatusDate 2025/01/16 12:07:30 *
iris.scopus.ideLinkStatusMillisecond 1737025650289 *
iris.sitodocente.maxattempts 1 -
iris.unpaywall.bestoahost publisher *
iris.unpaywall.bestoaversion publishedVersion *
iris.unpaywall.doi 10.18653/v1/2021.deelio-1.6 *
iris.unpaywall.hosttype publisher *
iris.unpaywall.isoa true *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.landingpage https://doi.org/10.18653/v1/2021.deelio-1.6 *
iris.unpaywall.license cc-by *
iris.unpaywall.metadataCallLastModified 09/02/2025 19:05:31 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1739124331463 -
iris.unpaywall.oastatus hybrid *
iris.unpaywall.pdfurl https://aclanthology.org/2021.deelio-1.6.pdf *
scopus.category 1712 *
scopus.category 1710 *
scopus.category 1708 *
scopus.category 1705 *
scopus.contributor.affiliation Istituto di Linguistica Computazionale “Antonio Zampolli” -
scopus.contributor.affiliation Istituto di Linguistica Computazionale “Antonio Zampolli” -
scopus.contributor.affiliation Istituto di Linguistica Computazionale “Antonio Zampolli” -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60008941 -
scopus.contributor.auid 57220748419 -
scopus.contributor.auid 57211678681 -
scopus.contributor.auid 57540567000 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.name Giovanni -
scopus.contributor.name Alessio -
scopus.contributor.name Felice -
scopus.contributor.subaffiliation -
scopus.contributor.subaffiliation -
scopus.contributor.subaffiliation -
scopus.contributor.surname Puccetti -
scopus.contributor.surname Miaschi -
scopus.contributor.surname Dell’Orletta -
scopus.date.issued 2021 *
scopus.description.abstracteng Several studies investigated the linguistic information implicitly encoded in Neural Language Models. Most of these works focused on quantifying the amount and type of information available within their internal representations and across their layers. In line with this scenario, we proposed a different study, based on Lasso regression, aimed at understanding how the information encoded by BERT sentence-level representations is arranged within its hidden units. Using a suite of several probing tasks, we showed the existence of a relationship between the implicit knowledge learned by the model and the number of individual units involved in the encodings of this competence. Moreover, we found that it is possible to identify groups of hidden units more relevant for specific linguistic properties. *
scopus.description.allpeopleoriginal Puccetti G.; Miaschi A.; Dell'Orletta F. *
scopus.differences scopus.relation.conferencename *
scopus.differences scopus.publisher.name *
scopus.differences scopus.relation.conferencedate *
scopus.differences scopus.identifier.isbn *
scopus.differences scopus.description.abstracteng *
scopus.document.type cp *
scopus.document.types cp *
scopus.identifier.isbn 9781954085305 *
scopus.identifier.pui 637100199 *
scopus.identifier.scopus 2-s2.0-85121843644 *
scopus.journal.sourceid 21101074572 *
scopus.language.iso eng *
scopus.publisher.name Association for Computational Linguistics (ACL) *
scopus.relation.conferencedate 2021 *
scopus.relation.conferencename 2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures: Deep Learning Inside Out, DeeLIO 2021 *
scopus.relation.firstpage 48 *
scopus.relation.lastpage 57 *
scopus.title How Do BERT Embeddings Organize Linguistic Knowledge? *
scopus.titleeng How Do BERT Embeddings Organize Linguistic Knowledge? *
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
File Dimensione Formato  
2021.deelio-1.6.pdf

accesso aperto

Descrizione: HowDoBERTEmbeddingsOrganize Linguistic Knowledge?
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 10.09 MB
Formato Adobe PDF
10.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/400473
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact