We introduce a novel geometry-processing pipeline to guide the fabrication of complex shapes from a single block of material using 4-axis CNC milling machines. This setup extends classical 3-axis CNC machining with an extra degree of freedom to rotate the object around a fixed axis. The first step of our pipeline identifies the rotation axis that maximizes the overall fabrication accuracy. Then we identify two height-field regions at the rotation axis's extremes used to secure the block on the rotation tool. We segment the remaining portion of the mesh into a set of height-fields whose principal directions are orthogonal to the rotation axis. The segmentation balances the approximation quality, the boundary smoothness, and the total number of patches. Additionally, the segmentation process takes into account the object's geometric features, as well as saliency information. The output is a set of meshes ready to be processed by off-the-shelf software for the 3-axis tool-path generation. We present several results to demonstrate the quality and efficiency of our approach to a range of inputs.

Automatic surface segmentation for seamless fabrication using 4-axis milling machines

Muntoni A.;
2021

Abstract

We introduce a novel geometry-processing pipeline to guide the fabrication of complex shapes from a single block of material using 4-axis CNC milling machines. This setup extends classical 3-axis CNC machining with an extra degree of freedom to rotate the object around a fixed axis. The first step of our pipeline identifies the rotation axis that maximizes the overall fabrication accuracy. Then we identify two height-field regions at the rotation axis's extremes used to secure the block on the rotation tool. We segment the remaining portion of the mesh into a set of height-fields whose principal directions are orthogonal to the rotation axis. The segmentation balances the approximation quality, the boundary smoothness, and the total number of patches. Additionally, the segmentation process takes into account the object's geometric features, as well as saliency information. The output is a set of meshes ready to be processed by off-the-shelf software for the 3-axis tool-path generation. We present several results to demonstrate the quality and efficiency of our approach to a range of inputs.
2021
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Computer Graphics
Geometry processing
Digital fabrication
Subtractive fabrication
File in questo prodotto:
File Dimensione Formato  
v40i2pp191-203.pdf

accesso aperto

Descrizione: Automatic Surface Segmentation for Seamless Fabrication Using 4-axis Milling Machines
Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 25.46 MB
Formato Adobe PDF
25.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/400507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact