The effects of a coupling agent on the behavior of flax fiber-reinforced composites have been investigated by testing the specimens under both quasi-static (QS) indentation and high-velocity impact loading. The specimens are manufactured embedding a commercial flax fiber fabric in a polypropylene (PP) matrix, neat and premodified with a maleic anhydride-grafted PP, the latter acting as a coupling agent to enhance the interfacial adhesion. QS compressive tests were performed using a dynamometer testing machine equipped with a high-density polyethylene indenter having the same geometry of the projectile employed in the impact tests. The impact tests were conducted setting three different impact velocities. Digital image correlation maps of out-of-plane displacement were employed to compare the specimens with and without the coupling agent. The QS testing results indicate that the coupling agent has an enhancing influence on the bending stiffness of tested flax composites. The testing results show that the coupling agent improves the mechanical behavior by decreasing the out-of-plane displacement under impact loading. This approach gives rise to new materials potentially useful for applications where impact performance is desired while also providing an opportunity for the incorporation of natural fibers to produce a lightweight composite.

The effect of a coupling agent on the impact behavior of flax fibre composites

P Russo;
2021

Abstract

The effects of a coupling agent on the behavior of flax fiber-reinforced composites have been investigated by testing the specimens under both quasi-static (QS) indentation and high-velocity impact loading. The specimens are manufactured embedding a commercial flax fiber fabric in a polypropylene (PP) matrix, neat and premodified with a maleic anhydride-grafted PP, the latter acting as a coupling agent to enhance the interfacial adhesion. QS compressive tests were performed using a dynamometer testing machine equipped with a high-density polyethylene indenter having the same geometry of the projectile employed in the impact tests. The impact tests were conducted setting three different impact velocities. Digital image correlation maps of out-of-plane displacement were employed to compare the specimens with and without the coupling agent. The QS testing results indicate that the coupling agent has an enhancing influence on the bending stiffness of tested flax composites. The testing results show that the coupling agent improves the mechanical behavior by decreasing the out-of-plane displacement under impact loading. This approach gives rise to new materials potentially useful for applications where impact performance is desired while also providing an opportunity for the incorporation of natural fibers to produce a lightweight composite.
2021
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Elastic behaviour
Mechanical behaviour
Plastic Behaviours
Coupling agent
Flax fiber
Polymer composites
File in questo prodotto:
File Dimensione Formato  
mats_143_3_031008.pdf

solo utenti autorizzati

Licenza: Altro tipo di licenza
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2021 The effect of a coupling agent on the impact behaviour of flax fiber composites.docx

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 1.97 MB
Formato Microsoft Word XML
1.97 MB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/401024
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact