The Laplacian of the electronic density diverges at the nuclear cusp, which complicates the development of Laplacian-level meta-GGA (LLMGGA) kinetic energy functionals for all-electron calculations. Here, we investigate some Laplacian renormalization methods, which avoid this divergence. We developed two different LLMGGA functionals, which improve the kinetic energy or the kinetic potential. We test these KE functionals in the context of Frozen-Density-Embedding (FDE), for a large palette of non-covalently interacting molecular systems. These functionals improve over the present state-of-the-art LLMGGA functionals for the FDE calculations.

The role of the reduced laplacian renormalization in the kinetic energy functional development

Constantin LA;Della Sala F;Fabiano E
2019

Abstract

The Laplacian of the electronic density diverges at the nuclear cusp, which complicates the development of Laplacian-level meta-GGA (LLMGGA) kinetic energy functionals for all-electron calculations. Here, we investigate some Laplacian renormalization methods, which avoid this divergence. We developed two different LLMGGA functionals, which improve the kinetic energy or the kinetic potential. We test these KE functionals in the context of Frozen-Density-Embedding (FDE), for a large palette of non-covalently interacting molecular systems. These functionals improve over the present state-of-the-art LLMGGA functionals for the FDE calculations.
2019
DFT
embedding
Laplacian
kinetic functional
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/401179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact