New models and technological advances are driving the digital transformation of healthcare systems. Ontologies and Semantic Web have been recognized among the most valuable solutions to manage the massive, various, and complex healthcare data deriving from different sources, thus acting as backbones for ontology-based Decision Support Systems (DSSs). Several contributions in the literature propose Ontology engineering methodologies (OEMs) to assist the formalization and development of ontologies, by providing guidelines on tasks, activities, and stakeholders' participation. Nevertheless, existing OEMs differ widely according to their approach, and often lack of sufficient details to support ontology engineers. This paper performs a meta-review of the main criteria adopted for assessing OEMs, and major issues and shortcomings identified in existing methodologies. The key issues requiring specific attention (i.e., the delivery of a feasibility study, the introduction of project management processes, the support for reuse, and the involvement of stakeholders) are then explored into three use cases of semantic-based DSS in health-related fields. Results contribute to the literature on OEMs by providing insights on specific tools and approaches to be used when tackling these issues in the development of collaborative OEMs supporting DSS.

Collaborative Ontology Engineering Methodologies for the Development of Decision Support Systems: Case Studies in the Healthcare Domain

Daniele Spoladore;Elena Pessot
2021

Abstract

New models and technological advances are driving the digital transformation of healthcare systems. Ontologies and Semantic Web have been recognized among the most valuable solutions to manage the massive, various, and complex healthcare data deriving from different sources, thus acting as backbones for ontology-based Decision Support Systems (DSSs). Several contributions in the literature propose Ontology engineering methodologies (OEMs) to assist the formalization and development of ontologies, by providing guidelines on tasks, activities, and stakeholders' participation. Nevertheless, existing OEMs differ widely according to their approach, and often lack of sufficient details to support ontology engineers. This paper performs a meta-review of the main criteria adopted for assessing OEMs, and major issues and shortcomings identified in existing methodologies. The key issues requiring specific attention (i.e., the delivery of a feasibility study, the introduction of project management processes, the support for reuse, and the involvement of stakeholders) are then explored into three use cases of semantic-based DSS in health-related fields. Results contribute to the literature on OEMs by providing insights on specific tools and approaches to be used when tackling these issues in the development of collaborative OEMs supporting DSS.
2021
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
ontology development
Semantic Web
ontology engineering methodologies
decision support systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/401250
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact