We study the quantum evolution under the combined action of the exponentials of two not necessarily commuting operators. We consider the limit in which the two evolutions alternate at infinite frequency. This case appears in a plethora of situations, both in physics (Feynman integral) and mathematics (product formulas). We focus on the case in which the two evolution times are scaled differently in the limit and generalize standard techniques and results.

Generalized product formulas and quantum control

Pascazio S
2019

Abstract

We study the quantum evolution under the combined action of the exponentials of two not necessarily commuting operators. We consider the limit in which the two evolutions alternate at infinite frequency. This case appears in a plethora of situations, both in physics (Feynman integral) and mathematics (product formulas). We focus on the case in which the two evolution times are scaled differently in the limit and generalize standard techniques and results.
2019
Istituto Nazionale di Ottica - INO
product formulasquantum controlquantum Zeno dynamicsadiabatic theorem
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/401325
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact