In the field of direct production of hydrogen from solar energy and water, photocatalytic methods hold great potential especially when metal-free molecular components are preferred. In this work, we have developed a new class of calix[4]arene-based molecular photosensitizers to be used as antenna systems in the photocatalytic production of hydrogen. The structure of the dyes has a typical donor-?-acceptor molecular architecture where a calix[4]arene scaffold is used as an embedded donor. The new materials have been fully characterized in their optical, electrochemical, and photocatalytic properties. The properties conferred by the calix[4]arene donor afforded twice larger performances compared to the corresponding linear system though showing similar quantitative optical properties. The new molecular design paves the way to a new strategy for photocatalytic hydrogen production where the calix[4]arene scaffold can afford more efficient systems and can offer the potential for host-guest supramolecular effects.
Multibranched Calix[4]arene-Based Sensitizers for Efficient Photocatalytic Hydrogen Production
Montini T;Fornasiero P;
2021
Abstract
In the field of direct production of hydrogen from solar energy and water, photocatalytic methods hold great potential especially when metal-free molecular components are preferred. In this work, we have developed a new class of calix[4]arene-based molecular photosensitizers to be used as antenna systems in the photocatalytic production of hydrogen. The structure of the dyes has a typical donor-?-acceptor molecular architecture where a calix[4]arene scaffold is used as an embedded donor. The new materials have been fully characterized in their optical, electrochemical, and photocatalytic properties. The properties conferred by the calix[4]arene donor afforded twice larger performances compared to the corresponding linear system though showing similar quantitative optical properties. The new molecular design paves the way to a new strategy for photocatalytic hydrogen production where the calix[4]arene scaffold can afford more efficient systems and can offer the potential for host-guest supramolecular effects.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_455257-doc_175853.pdf
solo utenti autorizzati
Descrizione: Multibranched Calix[4]arene-Based Sensitizers for Efficient Photocatalytic Hydrogen Production
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


