Recent progress in nanoscale optics is driven by the physics of electric and magnetic resonances supported by high-index dielectric nanoparticles. Here, we exploit optical bound states in the continuum in a subwavelength particle enhanced by an engineered substrate undergoing an epsilon-near-zero transition from an insulator to a conductor, and uncover how to boost dramatically high-order parametric nonlinear effects. Our strategy makes feasible an observation of a variety of multistep cascaded and multifrequency nonlinear effects in an individual subwavelength resonator. This would expand substantially the range of applications of Mie-resonant dielectric metaphotonics for highly efficient subwavelength optical circuitry, nonlinear metadevices, ultrasensitive hyperspectral sensing, and quantum nanophotonics.

High-harmonic generation at the nanoscale boosted by bound states in the continuum

De Angelis Costantino;
2019

Abstract

Recent progress in nanoscale optics is driven by the physics of electric and magnetic resonances supported by high-index dielectric nanoparticles. Here, we exploit optical bound states in the continuum in a subwavelength particle enhanced by an engineered substrate undergoing an epsilon-near-zero transition from an insulator to a conductor, and uncover how to boost dramatically high-order parametric nonlinear effects. Our strategy makes feasible an observation of a variety of multistep cascaded and multifrequency nonlinear effects in an individual subwavelength resonator. This would expand substantially the range of applications of Mie-resonant dielectric metaphotonics for highly efficient subwavelength optical circuitry, nonlinear metadevices, ultrasensitive hyperspectral sensing, and quantum nanophotonics.
2019
Istituto Nazionale di Ottica - INO
ENHANCED 2ND-HARMONIC GENERATIONDIELECTRIC NANOPARTICLESMETA-OPTICSRESONANCESFIELDPEROVSKITESILICONSI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/401351
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact