Paintings on canvas are complex structures created by superimposing layers of different composition. Investigations on the structure of these artworks can provide essential information on their state of conservation, pictorial technique, possible overpaintings, and in planning a proper conservation plan. Standard methods of investigation consist in sampling a limited number of fragments for stratigraphic analyses. Despite the recognized validity of these methods, they are affected by evident limitations. Nuclear magnetic resonance (NMR) profiling, often named NMR stratigraphy, is an NMR relaxometry technique applied by single-sided portable devices developed to overcome the disadvantages of microinvasive stratigraphic analyses. The potential of this approach on artworks, including wall paintings and a few examples of painted canvas, is described in the literature. In this study, NMR profiles of painting on canvas were examined by analyzing transverse relaxation time data by T quasi-continuous distributions and the results compared with standard stratigraphic cross-sections analysis. Combining signal intensity and T quasi-continuous distributions, the identification of textile, preparatory, and paint layers was enhanced. The diction "NMR stratigraphy" for these inhomogeneous layered artworks is also discussed. Indeed, unlike the stratigraphic cross-sections, NMR profiles provide information on a volume (flat slice), rather than on a surface, and the collected signal can derive from nonuniform and partially overlapping layers. This study paves the way for extensive investigations on relaxation time quasi-continuous distributions in various binder/pigment mixtures in order to improve the reliability of NMR profile as an innovative, non-invasive, and nondestructive method for analyzing paintings on canvas.

Identification of complex structures of paintings on canvas by NMR: Correlation between NMR profile and stratigraphy

Camaiti M
2020

Abstract

Paintings on canvas are complex structures created by superimposing layers of different composition. Investigations on the structure of these artworks can provide essential information on their state of conservation, pictorial technique, possible overpaintings, and in planning a proper conservation plan. Standard methods of investigation consist in sampling a limited number of fragments for stratigraphic analyses. Despite the recognized validity of these methods, they are affected by evident limitations. Nuclear magnetic resonance (NMR) profiling, often named NMR stratigraphy, is an NMR relaxometry technique applied by single-sided portable devices developed to overcome the disadvantages of microinvasive stratigraphic analyses. The potential of this approach on artworks, including wall paintings and a few examples of painted canvas, is described in the literature. In this study, NMR profiles of painting on canvas were examined by analyzing transverse relaxation time data by T quasi-continuous distributions and the results compared with standard stratigraphic cross-sections analysis. Combining signal intensity and T quasi-continuous distributions, the identification of textile, preparatory, and paint layers was enhanced. The diction "NMR stratigraphy" for these inhomogeneous layered artworks is also discussed. Indeed, unlike the stratigraphic cross-sections, NMR profiles provide information on a volume (flat slice), rather than on a surface, and the collected signal can derive from nonuniform and partially overlapping layers. This study paves the way for extensive investigations on relaxation time quasi-continuous distributions in various binder/pigment mixtures in order to improve the reliability of NMR profile as an innovative, non-invasive, and nondestructive method for analyzing paintings on canvas.
2020
cultural heritage
easel paintings on canvas
NMR profile
portable NMR
stratigraphy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/401444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact