Passive air samplers (PASs), which provide time-averaged concentrations of gaseous mercury over the timescale of weeks to months, are promising for filling a gap in the monitoring of atmospheric mercury worldwide. Their usefulness will depend on their ease of use and robustness under field conditions, their availability and affordability, and most notably, their ability to provide results of acceptable precision and accuracy. Here we describe a comparative evaluation of three PASs with respect to their ability to precisely and accurately record atmospheric background mercury concentrations at sites in both southern Italy and southern Ontario, Canada. The study includes the CNR-PAS with gold nanoparticles as a sorbent, developed by the Italian National Research Council, the IVL-PAS using an activated carbon-coated disk, developed by the Swedish Environmental Research Institute, and the MerPAS using a sulfur-impregnated activated carbon sorbent, developed at the University of Toronto and commercialized by Tekran. Detection limits are deduced from the variability in the amount of mercury quantified in more than 20 field blank samples for each PAS. Analytical and sampling precision is quantified through 22 triplicate deployments for each PAS, ranging in duration from 2 to 12 weeks. Accuracy and bias are assessed through comparison with gaseous elemental mercury concentrations recorded by Tekran 2537 automated mercury analyzers operating alongside the PASs at both locations. The performance of the PASs was significantly better in Italy, with all of them providing concentrations that are not significantly different from the average concentrations of the Tekran 2537 instruments. In Canada, where weather conditions were much harsher and more variable during the February through April deployment period, there are differences amongst the PASs. At both sites, the MerPAS is currently the most sensitive, precise, and accurate among the three PASs. A key reason for this is the larger size and the radial configuration of the MerPAS, which results in lower blank levels relative to the sequestered amounts of mercury when compared to the other two PASs, which rely on axial diffusion geometries. Since blank correction becomes relatively smaller with longer deployments, performance tends to be closer amongst the PASs during deployments of 8 and 12 weeks.

A field intercomparison of three passive air samplers for gaseous mercury in ambient air

Naccarato Attilio;Tassone Antonella;Martino Maria;Moretti Sacha;Macagnano Antonella;Zampetti Emiliano;Papa Paolo;Pirrone Nicola;Sprovieri Francesca;
2021

Abstract

Passive air samplers (PASs), which provide time-averaged concentrations of gaseous mercury over the timescale of weeks to months, are promising for filling a gap in the monitoring of atmospheric mercury worldwide. Their usefulness will depend on their ease of use and robustness under field conditions, their availability and affordability, and most notably, their ability to provide results of acceptable precision and accuracy. Here we describe a comparative evaluation of three PASs with respect to their ability to precisely and accurately record atmospheric background mercury concentrations at sites in both southern Italy and southern Ontario, Canada. The study includes the CNR-PAS with gold nanoparticles as a sorbent, developed by the Italian National Research Council, the IVL-PAS using an activated carbon-coated disk, developed by the Swedish Environmental Research Institute, and the MerPAS using a sulfur-impregnated activated carbon sorbent, developed at the University of Toronto and commercialized by Tekran. Detection limits are deduced from the variability in the amount of mercury quantified in more than 20 field blank samples for each PAS. Analytical and sampling precision is quantified through 22 triplicate deployments for each PAS, ranging in duration from 2 to 12 weeks. Accuracy and bias are assessed through comparison with gaseous elemental mercury concentrations recorded by Tekran 2537 automated mercury analyzers operating alongside the PASs at both locations. The performance of the PASs was significantly better in Italy, with all of them providing concentrations that are not significantly different from the average concentrations of the Tekran 2537 instruments. In Canada, where weather conditions were much harsher and more variable during the February through April deployment period, there are differences amongst the PASs. At both sites, the MerPAS is currently the most sensitive, precise, and accurate among the three PASs. A key reason for this is the larger size and the radial configuration of the MerPAS, which results in lower blank levels relative to the sequestered amounts of mercury when compared to the other two PASs, which rely on axial diffusion geometries. Since blank correction becomes relatively smaller with longer deployments, performance tends to be closer amongst the PASs during deployments of 8 and 12 weeks.
2021
Istituto sull'Inquinamento Atmosferico - IIA
ambient air
Atmospheric mercury
mercury
passive sampling
Elemental mercury
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/401526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact