The environmental occurrence of phthalates (PAE) is of great concern for the ecosystem and human health. Despite of their recognized toxicity on biota, a lack of knowledge is still present about the effects of PAE on plants. In this scenario, the effects of dimethyl phthalate (DMP) on duckweed plants (Lemna minor L. and Spirodela polyrhiza (L.) Schleid.), two model plant species for ecotoxicological and trophic studies, were investigated. Under a 7-day lab assay, morphological (biometric indicators), physiological (pigment content and photosynthetic performance) and molecular (DNA damage) parameters were studied. No effects were observed at growth and physiological level in both plants at 3 and 30 mg/L DMP. On the contrary, at 600 mg/L DMP, a concentration used for plant acute toxicity studies, a remarkable growth inhibition and pigment content and photosynthetic parameters reduction compared to control were observed in both plants species, particularly in Spirodela. Alkaline Comet assay in 24 h-treated plants revealed a genotoxic damage induced by DMP, particularly relevant in Spirodela. These results described for the first time the adverse effects exerted by DMP on aquatic plants, contributing to highlight the environmental risk associated to the presence of this compound in the aquatic ecosystem.

Ecotoxicological and genotoxic effects of dimethyl phthalate (DMP) on Lemna minor L. and Spirodela polyrhiza (L.) Schleid. plants under a short-term laboratory assay

Pietrini F;Passatore L;Carloni S;Cerasa M;Zacchini M
2022

Abstract

The environmental occurrence of phthalates (PAE) is of great concern for the ecosystem and human health. Despite of their recognized toxicity on biota, a lack of knowledge is still present about the effects of PAE on plants. In this scenario, the effects of dimethyl phthalate (DMP) on duckweed plants (Lemna minor L. and Spirodela polyrhiza (L.) Schleid.), two model plant species for ecotoxicological and trophic studies, were investigated. Under a 7-day lab assay, morphological (biometric indicators), physiological (pigment content and photosynthetic performance) and molecular (DNA damage) parameters were studied. No effects were observed at growth and physiological level in both plants at 3 and 30 mg/L DMP. On the contrary, at 600 mg/L DMP, a concentration used for plant acute toxicity studies, a remarkable growth inhibition and pigment content and photosynthetic parameters reduction compared to control were observed in both plants species, particularly in Spirodela. Alkaline Comet assay in 24 h-treated plants revealed a genotoxic damage induced by DMP, particularly relevant in Spirodela. These results described for the first time the adverse effects exerted by DMP on aquatic plants, contributing to highlight the environmental risk associated to the presence of this compound in the aquatic ecosystem.
2022
Istituto sull'Inquinamento Atmosferico - IIA
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Chlorophyll fluorescence
Comet assay
Dna damage
Duckweed
Emerging pollutants
Photosynthesis
File in questo prodotto:
File Dimensione Formato  
prod_458409-doc_178192.pdf

solo utenti autorizzati

Descrizione: Ecotoxicological and genotoxic effects of DMP on Lemna minor L. and Spirodela polyrhiza (L.) Schleid. under a short-term laboratory assay
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/401544
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact