There are no data in the literature on the energy valorization of globe artichoke (GA) leaves. Thus, an extensive lab-scale experimental torrefaction, carbonization, and coking study was performed. Operative temperatures of 200 °C-1000 °C with 30-120 min residence times were considered. Nonisothermal thermogravimetric analysis was performed at 10, 20, and 40 °C/min heating rates. Pyrolysis and combustion kinetics of raw and thermally treated samples using the Ozawa-Flynn-Wall (OFW) isoconversional method were investigated. All samples exhibited three-stage thermal decomposition behavior: first, moisture and light volatiles evolution common under air and nitrogen; second, carbohydrate fraction decomposition under nitrogen and volatiles combustion; third, lignin decomposition under nitrogen and char combustion. Average activation energy ranges are 54-223 kJ/mol and 223-503 kJ/mol for combustion and pyrolysis, respectively. Some irregular trends appeared when carbonization exceeded 500 °C due to the occurrence of secondary reactions between residual char and evolved gas and the decomposition of some ash components at temperatures reaching 1000 °C. Negative temperature kinetic coefficient appeared at 800-1000 °C as the temperature approached ash softening/fusing temperatures. SEM images indicated amorphous nature and increased porosity from 600 °C, which explains the pyrolysis and oxidation behavior observed in biochar samples produced over this range. Samples pyrolyzed for 30 min showed better elemental and energy results compared to longer times.

Pyrolysis and combustion kinetics of thermally treated globe artichoke leaves

Brachi P;Ruoppolo G;
2021

Abstract

There are no data in the literature on the energy valorization of globe artichoke (GA) leaves. Thus, an extensive lab-scale experimental torrefaction, carbonization, and coking study was performed. Operative temperatures of 200 °C-1000 °C with 30-120 min residence times were considered. Nonisothermal thermogravimetric analysis was performed at 10, 20, and 40 °C/min heating rates. Pyrolysis and combustion kinetics of raw and thermally treated samples using the Ozawa-Flynn-Wall (OFW) isoconversional method were investigated. All samples exhibited three-stage thermal decomposition behavior: first, moisture and light volatiles evolution common under air and nitrogen; second, carbohydrate fraction decomposition under nitrogen and volatiles combustion; third, lignin decomposition under nitrogen and char combustion. Average activation energy ranges are 54-223 kJ/mol and 223-503 kJ/mol for combustion and pyrolysis, respectively. Some irregular trends appeared when carbonization exceeded 500 °C due to the occurrence of secondary reactions between residual char and evolved gas and the decomposition of some ash components at temperatures reaching 1000 °C. Negative temperature kinetic coefficient appeared at 800-1000 °C as the temperature approached ash softening/fusing temperatures. SEM images indicated amorphous nature and increased porosity from 600 °C, which explains the pyrolysis and oxidation behavior observed in biochar samples produced over this range. Samples pyrolyzed for 30 min showed better elemental and energy results compared to longer times.
2021
Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili - STEMS
Biochar
Carbonization
Combustion kinetics
Globe artichoke
Pyrolysis kinetics
Torrefaction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/401562
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact