We investigate the impact of the photorefractive effect on lithium niobate integrated quantum photonic circuits dedicated to continuous variable on-chip experiments. The circuit main building blocks, i.e. cavities, directional couplers, and periodically poled nonlinear waveguides, are studied. This work demonstrates that photorefractivity, even when its effect is weaker than spatial mode hopping, might compromise the success of on-chip quantum photonics experiments. We describe in detail the characterization methods leading to the identification of this possible issue. We also study to which extent device heating represents a viable solution to counter this effect. We focus on photorefractive effect induced by light at 775 nm, in the context of the generation of non-classical light at 1550 nm telecom wavelength.

Photorefractive effect in LiNbO3-based integrated-optical circuits for continuous variable experiments

Zavatta A;
2020

Abstract

We investigate the impact of the photorefractive effect on lithium niobate integrated quantum photonic circuits dedicated to continuous variable on-chip experiments. The circuit main building blocks, i.e. cavities, directional couplers, and periodically poled nonlinear waveguides, are studied. This work demonstrates that photorefractivity, even when its effect is weaker than spatial mode hopping, might compromise the success of on-chip quantum photonics experiments. We describe in detail the characterization methods leading to the identification of this possible issue. We also study to which extent device heating represents a viable solution to counter this effect. We focus on photorefractive effect induced by light at 775 nm, in the context of the generation of non-classical light at 1550 nm telecom wavelength.
2020
Istituto Nazionale di Ottica - INO
Lithium-niobate; wave
File in questo prodotto:
File Dimensione Formato  
prod_458462-doc_178233.pdf

accesso aperto

Descrizione: Photorefractive effect in LiNbO3-based integrated-optical circuits for continuous variable experiments
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/401597
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact