N-Heterocyclic carbenes (NHCs) are promising modifiers and anchors for surface functionalization and offer some advantages over thiol-based systems. Because of their strong binding affinity and high electron donation, NHCs can dramatically change the properties of the surfaces to which they are bonded. Highly ordered NHC monolayers have so far been limited to metal surfaces. Silicon, however, remains the element of choice in semiconductor devices and its modification is therefore of utmost importance for electronic industries. Here, a comprehensive study on the adsorption of NHCs on silicon is presented. We find covalently bound NHC molecules in an upright adsorption geometry and demonstrate the formation of highly ordered mono- layers exhibiting good thermal stability and strong work function reductions. The structure and ordering of the monolayers is controlled by the substrate geometry and reactivity and in particular by the NHC side groups. These findings pave the way towards a tailor-made organic functionalization of silicon surfaces and, thanks to the high modularity of NHCs, new electronic and optoelectronic applications.

Controlled growth of ordered monolayers of N-heterocyclic carbenes on silicon

Conor Hogan;
2021

Abstract

N-Heterocyclic carbenes (NHCs) are promising modifiers and anchors for surface functionalization and offer some advantages over thiol-based systems. Because of their strong binding affinity and high electron donation, NHCs can dramatically change the properties of the surfaces to which they are bonded. Highly ordered NHC monolayers have so far been limited to metal surfaces. Silicon, however, remains the element of choice in semiconductor devices and its modification is therefore of utmost importance for electronic industries. Here, a comprehensive study on the adsorption of NHCs on silicon is presented. We find covalently bound NHC molecules in an upright adsorption geometry and demonstrate the formation of highly ordered mono- layers exhibiting good thermal stability and strong work function reductions. The structure and ordering of the monolayers is controlled by the substrate geometry and reactivity and in particular by the NHC side groups. These findings pave the way towards a tailor-made organic functionalization of silicon surfaces and, thanks to the high modularity of NHCs, new electronic and optoelectronic applications.
2021
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
carbene
NHC
DFT
organic
adsorption
silicon
SAM
self-assembly
File in questo prodotto:
File Dimensione Formato  
prod_455309-doc_175901.pdf

solo utenti autorizzati

Descrizione: Controlled growth of ordered monolayers of N-heterocyclic carbenes on silicon
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.7 MB
Formato Adobe PDF
6.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Franz_et_al-2021-Nature_Chemistry_ESM_5Mb.pdf

solo utenti autorizzati

Descrizione: Supplementary Information (compressed PDF)
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.14 MB
Formato Adobe PDF
4.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/401793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? ND
social impact