Research on microplastics (MPs) in the terrestrial environment is currently at a still embryonal stage. The current knowledge concerning poorly known diffuse sources of MPs pollution in terrestrial ecosystems have been considered in this work. In addition, a particular focus on the presence, mechanism of absorption and effects of MPs in plants has also been provided. Research concerning microplastics in urban areas and their intake by Tyre and Road Wear Particulates (TWRP) demonstrated a high contribution of this plastic debris to microplastic pollution, although quantification of these inputs is challenging to assess because studies are still very few. Around 50% of particles are expected to remain in the roadside soil, while the rest is transported away by the runoff with high concentrations of TRWP with a size ranging between 0.02 and 0.1?mm. Natural and anthropic environments like temporary ponds, stormwater retention ponds and small waterbodies were considered sensitive connecting ecosystems rich in biodiversity between terrestrial and aquatic environments. Even if studies are not yet exhaustive and just eight studies were currently published concerning these ecosystems, considerable values of MPs were already observed both in the sediment and water phase of ponds. Although still poorly explored, agricultural environments were already demonstrated to hide a significant number of microplastics linked mainly to agricultural activities and practices (e.g. mulch, sewage and compost fertilisation). However, the microplastics transportation processes into the soil are still understudied, and a few works are available. Microplastics and primarily nanoplastics presence was also observed in common edible plants (fruit and vegetables) with alarming Estimated Daily Intakes ranging from 2.96??1004 to 4.62??1005 (p kg-1?day-1) for adults depending on species. In addition, adverse effects on plants growth, photosynthetic activity, antioxidant system and nutritional values of several common fruits and vegetables were also demonstrated by several studies.

Microplastics pollution in the terrestrial environments: Poorly known diffuse sources and implications for plants

Claudia Campanale;Silvia Galafassi;Ilaria Savino;Carmine Massarelli;Valeria Ancona;Pietro Volta;Vito Felice Uricchio
2022

Abstract

Research on microplastics (MPs) in the terrestrial environment is currently at a still embryonal stage. The current knowledge concerning poorly known diffuse sources of MPs pollution in terrestrial ecosystems have been considered in this work. In addition, a particular focus on the presence, mechanism of absorption and effects of MPs in plants has also been provided. Research concerning microplastics in urban areas and their intake by Tyre and Road Wear Particulates (TWRP) demonstrated a high contribution of this plastic debris to microplastic pollution, although quantification of these inputs is challenging to assess because studies are still very few. Around 50% of particles are expected to remain in the roadside soil, while the rest is transported away by the runoff with high concentrations of TRWP with a size ranging between 0.02 and 0.1?mm. Natural and anthropic environments like temporary ponds, stormwater retention ponds and small waterbodies were considered sensitive connecting ecosystems rich in biodiversity between terrestrial and aquatic environments. Even if studies are not yet exhaustive and just eight studies were currently published concerning these ecosystems, considerable values of MPs were already observed both in the sediment and water phase of ponds. Although still poorly explored, agricultural environments were already demonstrated to hide a significant number of microplastics linked mainly to agricultural activities and practices (e.g. mulch, sewage and compost fertilisation). However, the microplastics transportation processes into the soil are still understudied, and a few works are available. Microplastics and primarily nanoplastics presence was also observed in common edible plants (fruit and vegetables) with alarming Estimated Daily Intakes ranging from 2.96??1004 to 4.62??1005 (p kg-1?day-1) for adults depending on species. In addition, adverse effects on plants growth, photosynthetic activity, antioxidant system and nutritional values of several common fruits and vegetables were also demonstrated by several studies.
2022
Microplastics
Tyre and road wear particulates
Agriculture
Temporary ponds
Plants
Edible species
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/401906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact