We address the electronic resonant transport in the presence of a transverse magnetic field through the single level of a suspended carbon nanotube acting as a quantum oscillator. We predict a negative magneto-conductance with a magnetic-field-induced narrowing of the resonance line and a reduction of the conductance peak when the nanotube is asymmetrically contacted to the leads. At finite bias voltage we study the threshold for phonon-assisted transport. © 2010 EPLA.

Resonant magneto-conductance of a suspended carbon nanotube quantum dot

Rastelli G;
2010

Abstract

We address the electronic resonant transport in the presence of a transverse magnetic field through the single level of a suspended carbon nanotube acting as a quantum oscillator. We predict a negative magneto-conductance with a magnetic-field-induced narrowing of the resonance line and a reduction of the conductance peak when the nanotube is asymmetrically contacted to the leads. At finite bias voltage we study the threshold for phonon-assisted transport. © 2010 EPLA.
2010
quantum dots
polarons
magnetoconductance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/402158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact