The crystallization of electrons in quasi-low-dimensional solids is studied in a model that retains the full three-dimensional nature of the Coulomb interactions. We show that restricting the electron motion to layers (or chains) gives rise to a rich sequence of structural transitions upon varying the particle density. In addition, the concurrence of low-dimensional electron motion and isotropic Coulomb interactions leads to a sizable stabilization of the Wigner crystal, which could be one of the mechanisms at the origin of the charge-ordered phases frequently observed in such compounds. © 2006 The American Physical Society.
Enhancement of Wigner crystallization in quasi-low-dimensional solids
Rastelli G;
2006
Abstract
The crystallization of electrons in quasi-low-dimensional solids is studied in a model that retains the full three-dimensional nature of the Coulomb interactions. We show that restricting the electron motion to layers (or chains) gives rise to a rich sequence of structural transitions upon varying the particle density. In addition, the concurrence of low-dimensional electron motion and isotropic Coulomb interactions leads to a sizable stabilization of the Wigner crystal, which could be one of the mechanisms at the origin of the charge-ordered phases frequently observed in such compounds. © 2006 The American Physical Society.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.