Defining natural background levels (NBL) of geochemical parameters in groundwater is a key element for establishing threshold values and assessing the environmental state of groundwater bodies (GWBs). In the Apulia region (Italy), carbonate sequences and clastic sediments host the 29 regional GWBs. In this study, we applied the Italian guidelines for the assessment of the NBLs, implementing the EU Water Framework Directive, in a south-European region characterized by the typical Mediterranean climatic and hydrologic features. Inorganic compounds were analyzed at GWB scale using groundwater quality data measured half-yearly from 1995 to 2018 in the regional groundwater monitoring network (341 wells and 20 springs). Nitrates, chloride, sulfate, boron, iron, manganese and sporadically fluorides, boron, selenium, arsenic, exceed the national standards, likely due to salt contamination along the coast, agricultural practices or natural reasons. Moni-toring sites impacted by evident anthropic activities were excluded from the dataset prior to NBL calculation using a web-based software tool implemented to automate the procedure. The NBLs resulted larger than the law limits for iron, manganese, chlorides, and sulfates. This methodology is suitable to be applied in Mediterranean coastal areas with high anthropic impact and overexploi-tation of groundwater for agricultural needs. The NBL definition can be considered one of the pillars for sustainable and long-term groundwater management by tracing a clear boundary between natural and anthropic impacts.
Assessing Natural Background Levels in the Groundwater Bodies of the Apulia Region (Southern Italy)
Rita Masciale;Stefano Amalfitano;Eleonora Frollini;Stefano Ghergo;Marco Melita;Daniele Parrone;Elisabetta Preziosi;Michele Vurro;Annamaria Zoppini;Giuseppe Passarella
2021
Abstract
Defining natural background levels (NBL) of geochemical parameters in groundwater is a key element for establishing threshold values and assessing the environmental state of groundwater bodies (GWBs). In the Apulia region (Italy), carbonate sequences and clastic sediments host the 29 regional GWBs. In this study, we applied the Italian guidelines for the assessment of the NBLs, implementing the EU Water Framework Directive, in a south-European region characterized by the typical Mediterranean climatic and hydrologic features. Inorganic compounds were analyzed at GWB scale using groundwater quality data measured half-yearly from 1995 to 2018 in the regional groundwater monitoring network (341 wells and 20 springs). Nitrates, chloride, sulfate, boron, iron, manganese and sporadically fluorides, boron, selenium, arsenic, exceed the national standards, likely due to salt contamination along the coast, agricultural practices or natural reasons. Moni-toring sites impacted by evident anthropic activities were excluded from the dataset prior to NBL calculation using a web-based software tool implemented to automate the procedure. The NBLs resulted larger than the law limits for iron, manganese, chlorides, and sulfates. This methodology is suitable to be applied in Mediterranean coastal areas with high anthropic impact and overexploi-tation of groundwater for agricultural needs. The NBL definition can be considered one of the pillars for sustainable and long-term groundwater management by tracing a clear boundary between natural and anthropic impacts.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.