Background Ferritin receptor (CD71) is an example of a very attractive cancer target, since it is highly expressed in virtually all tumor types, including metastatic loci. However, this target can be considered to be inaccessible to conventional target therapies, due to its presence in many healthy tissues. Here, we describe the preclinical evaluation of a tumor proteases-activatable human ferritin (HFt)-based drug carrier (The-0504) that is able to selectively deliver the wide-spectrum topoisomerase I inhibitor Genz-644282 to CD71-expressing tumors, preventing the limiting toxic effects associated with CD71-targeting therapies. Methods CD71 expression was evaluated using flow cytometry and immunohistochemistry techniques. The-0504 antiproliferative activity towards several cancer cell lines was assessed in vitro. The-0504 antitumor efficacy and survival benefit were evaluated in different human tumors, which had been grown either as xenografts or patient-derived xenografts in mice. The-0504 toxicology profile was investigated in multiple-cycle repeat-dose study in rodents. Results In vitro studies indicate that The-0504 is highly specific for CD71 expressing cells, and that there is a relationship between CD71 levels and The-0504 anticancer activity. In vivo treatments with The-0504 showed a remarkable efficacy, eradicating several human tumors of very diverse and aggressive histotypes, such as pancreas, liver and colorectal carcinomas, and triple-negative breast cancer. Conclusions Durable disease-free survival, persistent antitumor responses after discontinuation of treatment and favorable toxicology profile make The-0504 an ideal candidate for clinical development as a novel, CD71-targeted, low-toxicity alternative to chemotherapy.

High activity and low toxicity of a novel CD71-targeting nanotherapeutic named The-0504 on preclinical models of several human aggressive tumors

Falvo Elisabetta;Morea Veronica;Ceci Pierpaolo
2021

Abstract

Background Ferritin receptor (CD71) is an example of a very attractive cancer target, since it is highly expressed in virtually all tumor types, including metastatic loci. However, this target can be considered to be inaccessible to conventional target therapies, due to its presence in many healthy tissues. Here, we describe the preclinical evaluation of a tumor proteases-activatable human ferritin (HFt)-based drug carrier (The-0504) that is able to selectively deliver the wide-spectrum topoisomerase I inhibitor Genz-644282 to CD71-expressing tumors, preventing the limiting toxic effects associated with CD71-targeting therapies. Methods CD71 expression was evaluated using flow cytometry and immunohistochemistry techniques. The-0504 antiproliferative activity towards several cancer cell lines was assessed in vitro. The-0504 antitumor efficacy and survival benefit were evaluated in different human tumors, which had been grown either as xenografts or patient-derived xenografts in mice. The-0504 toxicology profile was investigated in multiple-cycle repeat-dose study in rodents. Results In vitro studies indicate that The-0504 is highly specific for CD71 expressing cells, and that there is a relationship between CD71 levels and The-0504 anticancer activity. In vivo treatments with The-0504 showed a remarkable efficacy, eradicating several human tumors of very diverse and aggressive histotypes, such as pancreas, liver and colorectal carcinomas, and triple-negative breast cancer. Conclusions Durable disease-free survival, persistent antitumor responses after discontinuation of treatment and favorable toxicology profile make The-0504 an ideal candidate for clinical development as a novel, CD71-targeted, low-toxicity alternative to chemotherapy.
2021
Istituto di Biologia e Patologia Molecolari - IBPM
Tumor targeted therapy
Preclinical studies
Human ferritin
Transferrin receptor 1 (CD71)
Breast cancer
Gastrointestinal cancer
File in questo prodotto:
File Dimensione Formato  
Falvo_JECCR_2021.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/402253
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 17
social impact