Land surface temperature (LST) predictors, such as impervious and vegetated surfaces, strongly influence the urban landscape mosaic, also changing microclimate conditions and exacerbating the surface urban heat island (SUHI) phenomenon. The aim of this study was to investigate the summer daytime SUHI phenomenon and the role played by impervious and tree cover surfaces in the 10 Italian peninsular metropolitan cities. Summer daytime LST values were assessed by using MODIS data referred to the months of June, July and August from 2016 to 2018. High spatial resolution (10?m) of impervious surface and tree cover layers was calculated based on open-data developed by the Italian National Institute for Environmental Protection and Research. A novel informative urban surface landscape layer was developed combining impervious surfaces and tree cover densities and its mapping for metropolitan cities was performed. Summer daytime SUHI rose significantly, increased especially in inland cities, by increasing the size of areas with low tree cover densities in the metropolitan core (or decreasing areas with low tree cover densities outside the metropolitan core), further increasing its intensity when the impervious density grew. A mitigating effect of the sea on daytime LST and SUHI was observed on coastal cities. The most intense SUHI phenomenon was observed in Turin (the largest Italian metropolitan city): for every 10% increase in areas with highly impervious surfaces and low tree cover densities in the metropolitan core, the SUHI significantly (p?

Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences

Morabito M
;
Crisci A;Guerri G;Messeri A;
2021

Abstract

Land surface temperature (LST) predictors, such as impervious and vegetated surfaces, strongly influence the urban landscape mosaic, also changing microclimate conditions and exacerbating the surface urban heat island (SUHI) phenomenon. The aim of this study was to investigate the summer daytime SUHI phenomenon and the role played by impervious and tree cover surfaces in the 10 Italian peninsular metropolitan cities. Summer daytime LST values were assessed by using MODIS data referred to the months of June, July and August from 2016 to 2018. High spatial resolution (10?m) of impervious surface and tree cover layers was calculated based on open-data developed by the Italian National Institute for Environmental Protection and Research. A novel informative urban surface landscape layer was developed combining impervious surfaces and tree cover densities and its mapping for metropolitan cities was performed. Summer daytime SUHI rose significantly, increased especially in inland cities, by increasing the size of areas with low tree cover densities in the metropolitan core (or decreasing areas with low tree cover densities outside the metropolitan core), further increasing its intensity when the impervious density grew. A mitigating effect of the sea on daytime LST and SUHI was observed on coastal cities. The most intense SUHI phenomenon was observed in Turin (the largest Italian metropolitan city): for every 10% increase in areas with highly impervious surfaces and low tree cover densities in the metropolitan core, the SUHI significantly (p?
2021
Istituto per la BioEconomia - IBE
Land surface temperature
Urban landscape
Vegetation
Mitigation strategies
Hot-spots
Soil consumption
File in questo prodotto:
File Dimensione Formato  
prod_451808-doc_170387.pdf

solo utenti autorizzati

Descrizione: Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.09 MB
Formato Adobe PDF
5.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_451808-doc_192474.pdf

accesso aperto

Descrizione: Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences
Tipologia: Documento in Post-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/402297
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 135
  • ???jsp.display-item.citation.isi??? 118
social impact