The plasma dry reforming reaction of methane with carbon dioxide is investigated in a nanosecond repetitively pulsed discharge, a type of plasma that offers some of the highest performance and non-equilibrium characteristics. The experiment's purpose was to examine the effect of varying the sequence of high-voltage pulses. We find that when successive pulses are closer than 500 ?s, a memory-dominated regime gradually develops, which influences subsequent breakdown events. While reactant conversions increase with the plasma energy, both energy efficiency and conversions increase by shortening the inter-pulse time at the same plasma energy. This finding suggests that plasma power is not the only thing that matters to achieve better performance. How it is delivered can make a significant difference, in particular for CO2, whose conversion doubles at the maximum energy for molecule investigated, 1.6 eV molecule-1.

CH4 reforming with CO2 in a nanosecond pulsed discharge. The importance of the pulse sequence

Dilecce G;Tosi P
2021

Abstract

The plasma dry reforming reaction of methane with carbon dioxide is investigated in a nanosecond repetitively pulsed discharge, a type of plasma that offers some of the highest performance and non-equilibrium characteristics. The experiment's purpose was to examine the effect of varying the sequence of high-voltage pulses. We find that when successive pulses are closer than 500 ?s, a memory-dominated regime gradually develops, which influences subsequent breakdown events. While reactant conversions increase with the plasma energy, both energy efficiency and conversions increase by shortening the inter-pulse time at the same plasma energy. This finding suggests that plasma power is not the only thing that matters to achieve better performance. How it is delivered can make a significant difference, in particular for CO2, whose conversion doubles at the maximum energy for molecule investigated, 1.6 eV molecule-1.
2021
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
Plasma Dry reforming
CO2 conversion
Pulsed nanosecond discharge
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/402335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact