Polymer nanocomposites, prepared by dispersing layered nanofillers bearing active and natural compounds in a polymer matrix, offer a tunable way to confer antibacterial activity to traditional polymers for packaging materials. Antibacterial host-guest systems were prepared by intercalation of mono-deprotonated rosmarinic and salicylic acid (RA and SA), with recognized antibacterial and antioxidant properties, into a nitrate-intercalated MgAl layered double hydroxide (LDH) via anion exchange reaction. The structural, morphological, and thermal properties of the modified LDHs (i.e., MgAl-RA and MgAl-SA), compared with those of a fully exchanged ZnAl-SA, indicated the successful immobilization of the functional molecules. Linear low-density polyethylene (LDPE)/antibacterial-LDH nanocomposites were prepared by a two-step melt compounding procedure. X-ray diffraction analysis and scanning electron microscopy showed that MgAl-RA was better dispersed than ZnAl-SA and MgAl-SA. LDPE nanocomposites containing the highest filler content showed increased thermo-oxidation stability, with a marked effect for LDPE/MgAl-RA due to the antioxidant power of RA. Furthermore, the antibacterial activity of LDPE/MgAl-RA was high and selective toward Staphylococcus aureus. Finally, the overall migration of RA and SA from films of polymer nanocomposites immersed in ethanol solution was followed by fluorescence spectroscopy evidencing a controlled release of the active compounds.
Antibacterial LDPE-based nanocomposites with salicylic and rosmarinic acid-modified layered double hydroxides
Coiai S;Cicogna F;Spiniello R;Onor M;Oberhauser W;Passaglia E
2021
Abstract
Polymer nanocomposites, prepared by dispersing layered nanofillers bearing active and natural compounds in a polymer matrix, offer a tunable way to confer antibacterial activity to traditional polymers for packaging materials. Antibacterial host-guest systems were prepared by intercalation of mono-deprotonated rosmarinic and salicylic acid (RA and SA), with recognized antibacterial and antioxidant properties, into a nitrate-intercalated MgAl layered double hydroxide (LDH) via anion exchange reaction. The structural, morphological, and thermal properties of the modified LDHs (i.e., MgAl-RA and MgAl-SA), compared with those of a fully exchanged ZnAl-SA, indicated the successful immobilization of the functional molecules. Linear low-density polyethylene (LDPE)/antibacterial-LDH nanocomposites were prepared by a two-step melt compounding procedure. X-ray diffraction analysis and scanning electron microscopy showed that MgAl-RA was better dispersed than ZnAl-SA and MgAl-SA. LDPE nanocomposites containing the highest filler content showed increased thermo-oxidation stability, with a marked effect for LDPE/MgAl-RA due to the antioxidant power of RA. Furthermore, the antibacterial activity of LDPE/MgAl-RA was high and selective toward Staphylococcus aureus. Finally, the overall migration of RA and SA from films of polymer nanocomposites immersed in ethanol solution was followed by fluorescence spectroscopy evidencing a controlled release of the active compounds.File | Dimensione | Formato | |
---|---|---|---|
prod_456956-doc_177086.pdf
solo utenti autorizzati
Descrizione: Antibacterial LDPE-based nanocomposites with salicylic and rosmarinic acid-modified layered double hydroxides
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.1 MB
Formato
Adobe PDF
|
4.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
pagination_CLAY_106276.pdf
Open Access dal 17/09/2023
Descrizione: “This document is the Accepted Manuscript version of a Published Work that appeared in final form in https://doi.org/10.1016/j.clay.2021.106276"..”
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.57 MB
Formato
Adobe PDF
|
1.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.