Predicting the metastasis risk in patients with a primary breast cancer tumor is of fundamental importance to decide the best therapeutic strategy in the framework of personalized medicine. Here, we present ARIADNE, a general algorithmic strategy to assess the risk of metastasis from transcriptomic data of patients with triple-negative breast cancer, a subtype of breast cancer with poorer prognosis with respect to the other subtypes. ARIADNE identifies hybrid epithelial/mesenchymal phenotypes by mapping gene expression data into the states of a Boolean network model of the epithelial-mesenchymal pathway. Using this mapping, it is possible to stratify patients according to their prognosis, as we show by validating the strategy with three independent cohorts of triple-negative breast cancer patients. Our strategy provides a prognostic tool that could be applied to other biologically relevant pathways, in order to estimate the metastatic risk for other breast cancer subtypes or other tumor types. A record of this paper's transparent peer review process is included in the supplemental information.

Classification of triple-negative breast cancers through a Boolean network model of the epithelial-mesenchymal transition

2021

Abstract

Predicting the metastasis risk in patients with a primary breast cancer tumor is of fundamental importance to decide the best therapeutic strategy in the framework of personalized medicine. Here, we present ARIADNE, a general algorithmic strategy to assess the risk of metastasis from transcriptomic data of patients with triple-negative breast cancer, a subtype of breast cancer with poorer prognosis with respect to the other subtypes. ARIADNE identifies hybrid epithelial/mesenchymal phenotypes by mapping gene expression data into the states of a Boolean network model of the epithelial-mesenchymal pathway. Using this mapping, it is possible to stratify patients according to their prognosis, as we show by validating the strategy with three independent cohorts of triple-negative breast cancer patients. Our strategy provides a prognostic tool that could be applied to other biologically relevant pathways, in order to estimate the metastatic risk for other breast cancer subtypes or other tumor types. A record of this paper's transparent peer review process is included in the supplemental information.
2021
Istituto di Biofisica - IBF
Triple-negative breast cancer Boolean network epithelial-mesenchymal transition metastasis tumor aggressiveness personalized medicine
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/402400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact