Biomedical engineers prefer decision forests over traditional decision trees to design state-of-the-art Parkinson's Detection Systems (PDS) on massive acoustic signal data. However, the challenges that the researchers are facing with decision forests is identifying the minimum number of decision trees required to achieve maximum detection accuracy with the lowest error rate. This article examines two recent decision forest algorithms Systematically Developed Forest (SysFor), and Decision Forest by Penalizing Attributes (ForestPA) along with the popular Random Forest to design three distinct Parkinson's detection schemes with optimum number of decision trees. The proposed approach undertakes minimum number of decision trees to achieve maximum detection accuracy. The training and testing samples and the density of trees in the forest are kept dynamic and incremental to achieve the decision forests with maximum capability for detecting Parkinson's Disease (PD). The incremental tree densities with dynamic training and testing of decision forests proved to be a better approach for detection of PD. The proposed approaches are examined along with other state-of-the-art classifiers including the modern deep learning techniques to observe the detection capability. The article also provides a guideline to generate ideal training and testing split of two modern acoustic datasets of Parkinson's and control subjects donated by the Department of Neurology in Cerrahpa¸sa, Istanbul and Departamento de Matemáticas, Universidad de Extremadura, Cáceres, Spain. Among the three proposed detection schemes the Forest by Penalizing Attributes (ForestPA) proved to be a promising Parkinson's disease detector with a little number of decision trees in the forest to score the highest detection accuracy of 94.12% to 95.00%.
Machine learning methods with decision forests for Parkinson's detection
Barsocchi P
2021
Abstract
Biomedical engineers prefer decision forests over traditional decision trees to design state-of-the-art Parkinson's Detection Systems (PDS) on massive acoustic signal data. However, the challenges that the researchers are facing with decision forests is identifying the minimum number of decision trees required to achieve maximum detection accuracy with the lowest error rate. This article examines two recent decision forest algorithms Systematically Developed Forest (SysFor), and Decision Forest by Penalizing Attributes (ForestPA) along with the popular Random Forest to design three distinct Parkinson's detection schemes with optimum number of decision trees. The proposed approach undertakes minimum number of decision trees to achieve maximum detection accuracy. The training and testing samples and the density of trees in the forest are kept dynamic and incremental to achieve the decision forests with maximum capability for detecting Parkinson's Disease (PD). The incremental tree densities with dynamic training and testing of decision forests proved to be a better approach for detection of PD. The proposed approaches are examined along with other state-of-the-art classifiers including the modern deep learning techniques to observe the detection capability. The article also provides a guideline to generate ideal training and testing split of two modern acoustic datasets of Parkinson's and control subjects donated by the Department of Neurology in Cerrahpa¸sa, Istanbul and Departamento de Matemáticas, Universidad de Extremadura, Cáceres, Spain. Among the three proposed detection schemes the Forest by Penalizing Attributes (ForestPA) proved to be a promising Parkinson's disease detector with a little number of decision trees in the forest to score the highest detection accuracy of 94.12% to 95.00%.File | Dimensione | Formato | |
---|---|---|---|
prod_454597-doc_175296.pdf
accesso aperto
Descrizione: Machine learning methods with decision forests for Parkinson's detection
Tipologia:
Versione Editoriale (PDF)
Dimensione
8.65 MB
Formato
Adobe PDF
|
8.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.