We consider polyhedral separation of sets as a possible tool in supervised classification. In particular, we focus on the optimization model introduced by Astorino and Gaudioso (J Optim Theory Appl 112(2):265-293, 2002) and adopt its reformulation in difference of convex (DC) form. We tackle the problem by adapting the algorithm for DC programming known as DCA. We present the results of the implementation of DCA on a number of benchmark classification datasets.

Polyhedral separation via difference of convex (DC) programming

Annabella Astorino;
2021

Abstract

We consider polyhedral separation of sets as a possible tool in supervised classification. In particular, we focus on the optimization model introduced by Astorino and Gaudioso (J Optim Theory Appl 112(2):265-293, 2002) and adopt its reformulation in difference of convex (DC) form. We tackle the problem by adapting the algorithm for DC programming known as DCA. We present the results of the implementation of DCA on a number of benchmark classification datasets.
2021
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Classification
Machine Learning
DC optimization
File in questo prodotto:
File Dimensione Formato  
prod_451956-doc_166445.pdf

solo utenti autorizzati

Descrizione: Polyhedral separation via difference of convex (DC) programming
Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 228.41 kB
Formato Adobe PDF
228.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/402842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact