Fish industry by-products constitute an interesting platform for the extraction and recovery of valuable compounds in a circular economy approach. Among them, mussel shells could provide a calcium-rich source for the synthesis of hydroxyapatite (HA) bioceramics. In this work, HA nanoparticles have been successfully synthesized starting from mussel shells (Mytilus edulis) with a two steps process based on thermal treatment to convert CaCO(3)in CaO and subsequent wet precipitation with a phosphorus source. Several parameters were studied, such as the temperature and gaseous atmosphere of the thermal treatment as well as the use of two different phosphorus-containing reagents in the wet precipitation. Data have revealed that the characteristics of the powders can be tailored, changing the conditions of the process. In particular, the use of (NH4)(2)HPO(4)as the phosphorus source led to HA nanoparticles with a high crystallinity degree, while smaller nanoparticles with a higher surface area were obtained when H(3)PO(4)was employed. Further, a selected HA sample was synthesized at the pilot scale; then, it was employed to fabricate porous 3D scaffolds using the direct foaming method. A highly porous scaffold with open and interconnected porosity associated with good mechanical properties (i.e., porosity in the range 87-89%, pore size in the range 50-300 mu m, and a compressive strength sigma = 0.51 +/- 0.14 MPa) suitable for bone replacement was achieved. These results suggest that mussel shell by-products are effectively usable for the development of compounds of high added value in the biomedical field.
Mussel Shell-Derived Macroporous 3D Scaffold: Characterization and Optimization Study of a Bioceramic from the Circular Economy
Scialla Stefania;Carella Francesca;Dapporto Massimiliano;Sprio Simone;Piancastelli Andreana;Adamiano Alessio;Degli Esposti Lorenzo;Iafisco Michele;Piccirillo Clara
2020
Abstract
Fish industry by-products constitute an interesting platform for the extraction and recovery of valuable compounds in a circular economy approach. Among them, mussel shells could provide a calcium-rich source for the synthesis of hydroxyapatite (HA) bioceramics. In this work, HA nanoparticles have been successfully synthesized starting from mussel shells (Mytilus edulis) with a two steps process based on thermal treatment to convert CaCO(3)in CaO and subsequent wet precipitation with a phosphorus source. Several parameters were studied, such as the temperature and gaseous atmosphere of the thermal treatment as well as the use of two different phosphorus-containing reagents in the wet precipitation. Data have revealed that the characteristics of the powders can be tailored, changing the conditions of the process. In particular, the use of (NH4)(2)HPO(4)as the phosphorus source led to HA nanoparticles with a high crystallinity degree, while smaller nanoparticles with a higher surface area were obtained when H(3)PO(4)was employed. Further, a selected HA sample was synthesized at the pilot scale; then, it was employed to fabricate porous 3D scaffolds using the direct foaming method. A highly porous scaffold with open and interconnected porosity associated with good mechanical properties (i.e., porosity in the range 87-89%, pore size in the range 50-300 mu m, and a compressive strength sigma = 0.51 +/- 0.14 MPa) suitable for bone replacement was achieved. These results suggest that mussel shell by-products are effectively usable for the development of compounds of high added value in the biomedical field.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.