We demonstrate 3D-printed nonimaging concentrators and propose a tracking integration scheme to reduce the external tracking requirements of CPV modules. In the proposed system, internal sun tracking is achieved by rotation of the mini-concentrators inside the module by small motors. We discuss the design principles employed in the development of the system, experimentally evaluate the performance of the concentrator prototypes, and propose practical modifications that may be made to improve on-site performance of the devices.

3D-printed concentrators for tracking-integrated CPV modules

Stefancich Marco
2016

Abstract

We demonstrate 3D-printed nonimaging concentrators and propose a tracking integration scheme to reduce the external tracking requirements of CPV modules. In the proposed system, internal sun tracking is achieved by rotation of the mini-concentrators inside the module by small motors. We discuss the design principles employed in the development of the system, experimentally evaluate the performance of the concentrator prototypes, and propose practical modifications that may be made to improve on-site performance of the devices.
2016
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
978-1-5106-0302-8
photovoltaics
solar concentration
tracking integration
3D printing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/403458
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact