In the aftermath of the 2016 US elections, the world started to realize the gravity of widespread deception in social media. Following Trump's exploit, we witnessed to the emergence of a strident dissonance between the multitude of efforts for detecting and removing bots, and the increasing effects that these malicious actors seem to have on our societies. This paradox opens a burning question: What strategies should we enforce in order to stop this social bot pandemic? In these times - during the run-up to the 2020 US elections - the question appears as more crucial than ever. Particularly so, also in light of the recent reported tampering of the electoral debate by thousands of AI-powered accounts. What stroke social, political and economic analysts after 2016 - deception and automation - has been however a matter of study for computer scientists since at least 2010. In this work, we briefly survey the first decade of research in social bot detection. Via a longitudinal analysis, we discuss the main trends of research in the fight against bots, the major results that were achieved, and the factors that make this never-ending battle so challenging. Capitalizing on lessons learned from our extensive analysis, we suggest possible innovations that could give us the upper hand against deception and manipulation. Studying a decade of endeavours at social bot detection can also inform strategies for detecting and mitigating the effects of other - more recent - forms of online deception, such as strategic information operations and political trolls

A Decade of Social Bot Detection

S Cresci
2020

Abstract

In the aftermath of the 2016 US elections, the world started to realize the gravity of widespread deception in social media. Following Trump's exploit, we witnessed to the emergence of a strident dissonance between the multitude of efforts for detecting and removing bots, and the increasing effects that these malicious actors seem to have on our societies. This paradox opens a burning question: What strategies should we enforce in order to stop this social bot pandemic? In these times - during the run-up to the 2020 US elections - the question appears as more crucial than ever. Particularly so, also in light of the recent reported tampering of the electoral debate by thousands of AI-powered accounts. What stroke social, political and economic analysts after 2016 - deception and automation - has been however a matter of study for computer scientists since at least 2010. In this work, we briefly survey the first decade of research in social bot detection. Via a longitudinal analysis, we discuss the main trends of research in the fight against bots, the major results that were achieved, and the factors that make this never-ending battle so challenging. Capitalizing on lessons learned from our extensive analysis, we suggest possible innovations that could give us the upper hand against deception and manipulation. Studying a decade of endeavours at social bot detection can also inform strategies for detecting and mitigating the effects of other - more recent - forms of online deception, such as strategic information operations and political trolls
2020
Istituto di informatica e telematica - IIT
social media analysis
mining
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/403651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact