In this paper, we present WaterSpy, a project developing an innovative, compact, cost-effective photonic device for pervasive water quality sensing, operating in the mid-IR spectral range. The approach combines the use of advanced Quantum Cascade Lasers (QCLs) employing the Vernier effect, used as light source, with novel, fibre-coupled, fast and sensitive Higher Operation Temperature (HOT) photodetectors, used as sensors. These will be complemented by optimised laser driving and detector electronics, laser modulation and signal conditioning technologies. The paper presents the WaterSpy concept, the requirements elicited, the preliminary architecture design of the device, the use cases in which it will be validated, while highlighting the innovative technologies that contribute to the advancement of the current state of the art.
WaterSpy: A High Sensitivity, Portable Photonic Device for Pervasive Water Quality Analysis
Varriale Antonio;Ausili Alessio;D'Auria Sabato;
2019
Abstract
In this paper, we present WaterSpy, a project developing an innovative, compact, cost-effective photonic device for pervasive water quality sensing, operating in the mid-IR spectral range. The approach combines the use of advanced Quantum Cascade Lasers (QCLs) employing the Vernier effect, used as light source, with novel, fibre-coupled, fast and sensitive Higher Operation Temperature (HOT) photodetectors, used as sensors. These will be complemented by optimised laser driving and detector electronics, laser modulation and signal conditioning technologies. The paper presents the WaterSpy concept, the requirements elicited, the preliminary architecture design of the device, the use cases in which it will be validated, while highlighting the innovative technologies that contribute to the advancement of the current state of the art.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


